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Subgroup of Quadratic Residues

» Let p=2q+1 be a safe prime and Z;, = {1,...,p— 1}
» Let Gy = {2’ mod p:z € Zy} C Z, be the set of quadratic residues

» Example: p=2%x11+1=23 and ¢ =11
Ly

Gll
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Properties of (5,
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Properties of (5,

Subgroup membership
Square numbers 1,4,9,16,25,. .. are always members of G,
3 is always a member of G,
But: membership of 2,5,6,7,... depends on p
x € G, implies p — z ¢ G, (and vice versa)

All elements of G, \ {1} are generators

Testing subgroup membership x € G,
Method 1: check if 27 mod p =1
Method 2: check if ( ) =1

z
p
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Practical Disadvantages of (5,

Testing group membership is relatively expensive

1xmodular exponentiation for Method 1
1x Jacobi symbol for Method 2
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Practical Disadvantages of (5,

Testing group membership is relatively expensive

1xmodular exponentiation for Method 1
1xJacobi symbol for Method 2

Group membership depends on p
Selecting generators
Generating random group elements

ElGamal message encoding I' : M — G, depends on p
General-purpose messages M = {0,1}"
Specific messages M = {m1,...,m,}

Example: prime number encoding of voting options (Norway, Swiss Post, CHVote, ...

)
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How Expensive is Group Membership Testing?

lpll = 2048 bits lp|| = 3072 bits
(%)zl z9modp=1 (%)zl z9mod p =1
C (GMP) 98ms 23’224ms 186ms 72’992ms
Java (Bouncy Castle) || 12’871ms 35705ms || 27°'132ms 114’262ms
Python (SymPi) 15’447ms 243’561ms || 34’762ms 691’568 ms
Javascript (VJISC) 12’453ms 692’821ms || 23’878ms | 2'162’474ms

Running times measured for 10’000 membership tests (MacBook Pro, 2.3GHz i9)
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How Difficult is Message Encoding in Practice?

3.4.2 Encoding

We denote the actual voting options as a vector of strings v < (vo,...,vn_1), v; € T
Sometimes, the canton’s configuration of the election event only guarantees that the identifiers
of the actual voting options are unique for a specific election, but not across different elections.
In such cases, we concatenate the identifier of the election to the actual voting option. For
simplicity, we will throughout this document always refer to the domain of the actual voting
options as T;%°.

The voting options are encoded as prime numbers p < (Do, - .., DPn-1), Di € (G,NP)\ ¢
(maintaining the order between both vectors). The cryptographic primitives specifications
details the algorithms for generating the small primes used to encode voting options [12].
Finally, we denote the semantic information corresponding to each voting option as a vector of
strings o < (09, ...,0n-1), 0; € Aycs™

“Swiss Post Voting System — System Specification, Version 1.3.1" (Page 21-22, Part I)
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How Difficult is Message Encoding in Practice?

We define a primes mapping table pTable, conceptually, as the combination of v, p and o and
represented as an ordered list of tuples, i.e. ((vo, Do, 00),- -, (Va_1, Pn—1,0n—1)). The mapping
of voting options to prime numbers is injective: each voting option maps to a distinct prime
number

The setup component generates the primes mapping table pTable in the algorithm 4.3
GenVerDat and sends it to the auditors (see figure 6) and to the Tally control component (see
figure 7). The cryptographic protocol ensures that all participants have the same view of
pTable by linking it to the Verification Card Keystore VCks;4 and the voting client’s
zero-knowledge proofs. In particular, the following algorithms ensure that all protocol
participants have a consistent view of pTable:

“Swiss Post Voting System — System Specification, Version 1.3.1" (Page 21-22, Part Il)
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How Difficult is Message Encoding in Practice?

e The setup component includes the contents of pTable in the authenticated symmetric
encryption in 4.9 GenCredDat.

o The voting client includes the contents of pTable in the authenticated symmetric
decryption in 5.3 GetKey and in the zero-knowledge proofs in 5.4 CreateVote.

e The control components include the contents of pTable when verifying the voting client’s
zero-knowledge proofs in 5.5 VerifyBallotCCR;.

e The tally control component includes the contents of pTable when verifying the voting
client’s zero-knowledge proofs in 6.4 VerifyVotingClientProofs.

¢ The auditors include the contents of pTable when verifying the voting client’s
zero-knowledge proofs in VerifyTally.

“Swiss Post Voting System — System Specification, Version 1.3.1" (Page 21-22, Part IIl)
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Proposal For a Alternative Group

Definition: let |z| def min(z, p — =) be the absolute value of z € Z},

p
Let ZF = {|z| : x € Z;} = {1,...,q}
Let 2 oy = |zy mod p| and inv(z) = |z~! mod p|

(Z;, o,inv, 1) forms a group: the group of absolute values modulo p = 2¢ + 1

Proof: see paper
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Practical Advantages of Z; Over (G,

Group membership = € Z]‘f can be tested efficiently as 1 < x < ¢

Since p < p’ implies Z; C Z;L,, it follows that:
1,2,3,4,5,... are always group elements,
1,2,3,4,5,... are possible random group elements,
2,3,4,5,6,... are always generators,
2,3,5,7,11,... are always the smallest prime elements,

i.e., independently of p

For general-purpose messages, I' : {0,1}" — Z; can be defined by interpreting
them as binary numbers (except for 0™)

For specific messages, I' : {m1,...,my} — Z; can be defined “globally”, i.e.,
independently of p
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Conclusion

From a security perspective, Z; and G, are equivalent (DDH holds)
Group operation in Zz‘," is slightly less efficient (but cost is negligible)
Membership tests in Z; are much more efficient

Plus some other practical advantages
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Conclusion

From a security perspective, Z; and G, are equivalent (DDH holds)
Group operation in Zz‘f is slightly less efficient (but cost is negligible)
Membership tests in Z;; are much more efficient

Plus some other practical advantages

General recommendation:

Use ZZ‘; instead of G in applications and implementations of ElGamal

PS: Already implemented in CHVote 1.3

12/12



