Private Internet Voting on Untrusted
Voting Devices

Rolf Haenni and Reto E. Koenig and Philipp Locher

BFH, Bern University of Applied Sciences, Biel, Switzerland
{rolf.haenni,reto.koenig,philipp.locher}@bfh.ch

Abstract. This paper introduces a new cryptographic Internet voting
protocol, which offers individual verifiability and vote privacy even on
completely untrustworthy voting devices. The core idea is to minimize the
voting client to a simple device capable of scanning a QR code, sending its
content to the web server of the included URL, and displaying a response
message to the voter. Today, QR code scanners are pre-installed into
mobile devices, and users are familiar to using them for many different
purposes. By reducing the voting client to an existing functionality of the
voters’ personal device, the implementation of the protocol is simplified
significantly compared to other protocols. The protocol itself can be seen
as a variant of Chaum’s code voting scheme with an elegant solution
to the problem of distributing the trust to multiple authorities. The
approach is based on BLS signatures and verifiable mix-nets. It relies on
trustworthy printing and mailing services during the election setup.

1 Introduction

A major challenge in Internet voting is the untrusted voting client. Current
protocol proposals and implementations, for example the ones used in Switzer-
land, provide a mechanism for achieving cast-as-intended and recorded-as-cast
verifiability simultaneously by returning verification codes to the voter for each
submitted vote. Since the malicious voting client cannot predict these codes, ma-
nipulation attempts can be detected by the voter with high probability. However,
vote privacy remains an unsolved problem on the client, because from performing
the encryption of the submitted votes, the malicious voting client learns both
the selected voting options and the encryption randomization. The latter serves
as a receipt to prove the selected voting options to a third party. With respect to
vote privacy, such systems are therefore only secure under the strong assumption
of a fully trustworthy voting client.

In this paper, we introduce a fundamentally different Internet voting protocol,
which offers vote privacy even in the presence of a completely untrustworthy
voting client. The difference comes from minimizing the role assigned to the voting
client as far as possible, in such a way that it not even learns the selected voting
options. We only require the voting client of being capable of scanning a QR
code, sending its content to the web server of the included URL, and displaying a
response message to the voter. Since this is a pre-installed functionality of today’s

2 R. Haennni et al.

mobile devices, and because users are familiar to scanning QR code from different
applications, we can almost entirely eliminate the complexity of designing and
implementing a reliable voting web client.

Our proposal is motivated by the current situation in Switzerland, where
legislation is very strict with respect to E2E-verifiability, but quite lax with
respect to the privacy problem on the voting client. We interpret this unbalanced
regulation as an unwanted compromise in the absence of a better solution. Our
paper aims at providing a compelling solution for solving this conflict. Another
motivation for our protocol is the usability study in [6], which showed that voters
are able to use code voting with QR codes in an E2E-verifiable system. The
paper ended with an invitation to the community for presenting corresponding
cryptographic protocols. This paper is a first response to the this invitation.

1.1 Election Model and Voting Procedure

If we take the Swiss context as a reference point for designing the protocol, we
cannot assume that voters possess any type of electronic credentials, which they
could possibly use for authentication when submitting the ballot. On the other
hand, we can assume that reliable printing and postal services are available for
sending such credentials to the voters prior to an election, possibly together with
other voting materials. We can also assume that with multiple simultaneous
mg-out-of-n; elections, all possible election uses cases can be covered adequately
(see discussion in [4, Section 2.2]). For reason of simplicity, we restrict ourselves
in this paper to a single m-out-of-n election, but our protocol is flexible enough
to support the general case with just a few additional steps.

From the voter’s perspective, the election procedure starts with receiving a
letter from the electoral office over postal mail. In an m-out-of-n election, this
letter includes n different voting cards, one for each voting option, and a single
confirmation card. Note that the optimal design of these cards is still an open
question [6], but for security reasons, it is important that not all elements printed
on these cards are visible at the same time. In the example shown in Figure 1, we
consider the case of a referendum (1-out-of-2 election) with two voting cards and
one confirmation card. The QR codes are printed on the back of these cards to
avoid making them visible together with the verification and participation codes.

Given these cards, the voting procedure is now relatively simple and efficient.
It only assumes that the voter is capable of scanning QR codes and sending the
scanned data to the included URL, for example using a mobile phone with a
working Internet connection. Then the voting procedure consists of five steps:

1. Select m voting cards (or less to submit blank votes).

2. Scan the voting QR codes on the back of each selected voting card.

3. Compare the displayed codes with the verification codes shown on the voting
cards (below the selected voting options).

4. If all codes match, scan the confirmation QR code on the back of the confir-
mation card.

5. Compare the displayed code with the participation code shown on the confir-
mation card.

Private Internet Voting on Untrusted Voting Devices 3

VOTING CARD #1823 VOTING CARD #1823 CONFIRMATION CARD #1823

Do you accept the tax law? Do you accept the tax law? Do you accept the tax law?

YES NO

Verification Code: Verification Code:

3D7A 917B

Scan QR code on back and check verification code Scan QR code on back and check verification code Scan QR code on back and check participation code

Participation Code:

1785-9383-6912

€0-€2HO
€0-€2HO
€0-€2HO

€0-€CHO
€0-€2HO
€0-€2HO

] =

Scan QR code and check verification code on front Scan QR code and check verification code on front Scan QR code and check participation code on front

Fig. 1: Example of voting and participation cards for a referendum with two
voting options "YES" and "NO". The front sides of the cards are shown on top
and the back sides at the bottom. The sizes of the QR codes are realistic.

For the verification codes to match in Step 3, the votes must have been cast
as intended with high probability, and for the participation code to match in
Step 5, the vote must have been confirmed as intended with high probability.
This mechanism for achieving cast-as-intended and recorded-as-cast verifiability
is exactly the same as in current approaches used in Switzerland [4, 8], but in our
new protocol, the voting client learns nothing about the selected voting options.
Note that the general idea and the voting procedure in our approach are very
similar to Chaum'’s code voting [3,7], but our new protocol requires much weaker
trust assumptions for generating the codes and performing the tally.

In case the verification codes do not match in Step 3 of the above procedure,
voters in Switzerland are instructed to submit the ballot on paper using the
existing traditional voting channels. We adopt this convention here to handle
such exceptional cases properly, i.e., without creating new security problems. In
case the participation code does not match in Step 5, vote confirmation can be
repeated—possibly on different devices—until the code matches. If the problem
persists, voters are instructed to report the problem to the electoral office.

In the referendum example of Figure 1, the voter simply selects one of the
two voting cards with ID ¢ = 1823, let’s say the second one for voting option
"NO", scans the QR code on the back of the card using a mobile device, checks if
the verification code displayed on the device is "917B", scans the QR code on
the back of the confirmation card, and finally checks if the participation code
displayed on the device is "1785-9383-6912". Note that this procedure can be
completed very quickly, for a single referendum possibly within a few seconds.

1.2 Contribution and Overview

This paper presents a new cryptographic voting protocol, which primarily aims
at achieving vote privacy on untrustworthy voting clients. It has similarities to
existing approaches [5,10], but it is quite unique in its elegant way of combining

4 R. Haennni et al.

recent but well-established cryptographic primitives (BLS signatures, verifiable
mix-nets, zero-knowledge proofs) with modern but wide-spread and accepted
technologies (scanning of QR codes on mobile phones). Given this unique com-
bination, we can achieve an additional important security goal simultaneously
with improving the usability for the voters. Because security and usability are
usually in conflict with each other, this is quite remarkable.

By limiting the responsibility of the voting client in the protocol, we also
reduce the set of attack vectors and the overall complexity of the whole system.
In an actual implementation, for example, since there is no need for implementing
cryptography in JavaScript, developers can optimize their efforts into a single
reliable back-end technology. At the same time, attacks based on injecting
malicious JavaScript code become less likely and less powerful.

In Section 2, we start with an overview of the cryptographic primitives used
in our protocol. The protocol itself is described in Section 3, which is the main
section of this paper. The protocol description defines the involved protocol
parties, the communication channels, the adversary model, and the three main
protocol phases. In Section 4, we discuss the security properties of the proposed
protocol, and Section 5 concludes the paper.

2 Cryptographic Background

Our protocol is based on various cryptographic primitives, which are commonly
used in e-voting protocols. We briefly introduce them in the following subsections,
but we refer to the literature for more details. Our protocol also relies on BLS
signatures, which have not been used in e-voting very often, but which have
become an established tool in other areas such as crypto-currencies. We briefly
introduce BLS signatures in Section 2.2.

2.1 ElGamal Encryptions

The protocol as presented in this paper depends on a homomorphic asymmetric
encryption scheme such as ElGamal. The choice of ElGamal is not mandatory,
but we propose using it for its simplicity and maximal convenience. ElGamal is
IND-CPA secure in a group, in which the DDH problem is hard. We propose the
usual prime-order subgroup G, C Zj; of quadratic residues modulo a safe prime
p = 2¢ + 1 and assume that G, and a generator g € G4\{1} are publicly known.

In this setting, we denote the generation of an ElGamal key pair consisting of
a randomly selected private decryption key dk € Z4 and a public encryption key
ek = g% by (dk,ek) <~ KeyGenEnc(). For a given encryption key ek € G, and
message m € G,, we use e < Ence,(m,r) to denote the encryption of m with
randomization 7 < Zg. The result is a ciphertext pair e = (¢",m-ek") € G4 x G,
consisting of two group elements. For the decryption m < Decgyy(e) of a ciphertext
e = (a,b), the decryption key dk can be used to compute m = b/a®".

ElGamal keys can be generated in a distributed setting, in which the private
decryption key of a common encryption key is shared among multiple parties. In

Private Internet Voting on Untrusted Voting Devices 5

the simplest construction of ek = [];_, eks, all s holders of a private key share
dky. need to cooperate to perform the decryption. We use aj, < pDecy, (e) to
denote the partial decryption of a ciphertext e = (a,b). The resulting values
aj, = a®* can then be used to retrieve the plaintext m = b/[[,_, a}. More
involved constructions exist to enable a threshold number ¢t < s of key share
holders to perform the decryption. This is an optional extension for our protocol.
In applications of ElGamal in e-voting, where up to m voting options can be
selected from n available voting options, it is possible to encode a set of selections
S C [1,n], |S] < m, into an ElGamal message by selecting n small prime numbers
P1;- -, Pn from G, NP and by computing the product I'(S) = [],.g ps over all
selections. Under the condition that I'(S) < p, such a product can be decoded
into S using integer factorization. Therefore, to guarantee the uniqueness of the
decoding, the maximal size of the parameters m and n is limited by p. In most
practical election use cases, however, this limitation is not a real problem.

2.2 BLS Signatures

BLS signatures are defined over three groups G, G2, and G of a bilinear map
e : G1 X Gy — Gp. If we use the popular pairing-friendly elliptic curves from
the Barreto-Lynn-Scott family, for example, we achieve approximately 128 bits
of security for BLS12-381 and 256 bits of security for BLS48-581 (both curves
are included in a current IETF draft [11]). In the particular case of BLS12-381,
G1 C E;[Fp] is a prime-order subgroup of the elliptic curve F; : y? = 2° + 4
over the prime-order field IF,, for [|p|| = 381, G2 C Es[F2] is a subgroup of the
curve By : y?> = 2% + 4(1 + i) over F2, and Gr C Fi2 is a subgroup of the
integers modulo p'2. The common group order ¢ = |G| = |Gs| = |G| is 256
bits long, which corresponds to 128 bits of security. Note that BLL.S12-381 also
defines generators g1 € G1 and go € G2 for both groups.

In the BLS signature scheme, we use (sk,vk) <& KeyGenSig() to denote the
generation of a key pair. The private signature key sk € Z, is picked at random
and the public verification key vk = g3¥ is computed in the group Gs.! For a
collision-resistant hash function hash : {0,1}* — G4, the BLS signature of a
message m € {0,1}* is a single deterministic group element o = hash(m)** € G;.
We use o + Sign,;(m) to denote this operation. Note that such signatures are
points 0 = (z,y) € F, x F,, on the curve E4[F,], which can be represented using
Ilpll + 1 bits (||p]| bits for z and 1 bit for the sign of +y). For BLS12-381, the
signature size is therefore 382 bits (48 bytes). A BLS signature o € G; is valid
if e(o, g2) = e(hash(m), vk), i.e., for performing the verification Verify,; (o, m) €
{0, 1}, the pairing function needs to be computed twice.

A useful property of the BLS signature scheme is the aggregation of signatures
o < Signg, (m) generated under multiple private keys into a single signature
o =[1;_, ok The aggregated signature can then be verified using the combined
verification key vk = [[;_, vk, of all s key holders. As in the case of ElGamal,

! In our protocol, we minimize the size of the signatures by using G; for the signatures
and G4 for the public keys, but the roles of the groups are interchangeable.

6 R. Haennni et al.

there are more involved methods to allow the signature to be generated by a
threshold number of key holders, but we will not need this in our protocol.

2.3 Non-Interactive Zero-Knowledge Proofs

We use different non-interactive zero-knowledge proofs to ensure that the involved
election authorities follow the protocol faithfully. First, to avoid the possibility
of so-called rogue key attacks [9], they need to prove knowledge of the generated
private ElGamal and BLS keys dk and sk, respectively. We will denote the
generation of such a proof as

™ & NIZKP[(dk, sk) : ek = g% A vk = g5¥],

and the verification as Verify(7*Y, ek, vk) € {0, 1}. Note that 7% is a conjunctive
composition of two non-interactive Schnorr proofs. Second, authorities need
to prove the correctness of the partial decryptions a; = af* for a given list
e = (e1,...,en) of ElGamal ciphertexts e; = (a;, b;). We denote this proof as

N
7 & NIZKP[(dk) : ek = g™ A (/\ aj = aglk)],
i=1

which is a conjunctive composition of IV + 1 non-interactive Schnorr proofs. For
a = (ay,...,an) and a’ = (af,...,d)y), the proof verification is denoted by
Verify(m9e¢, ek, a,a’) € {0,1}. For the details of corresponding proof generation
and verification algorithms, we refer to the literature [4, Section 5.4].

2.4 Verifiable Mix-Nets

Other important cryptographic tools in our protocol are verifiable re-encryption
mix-nets. The idea is to apply a series of cryptographic shuffles to an input list
e = (e1,...,en) of ElGamal ciphertexts. In each shuffle, a random permutation is
applied to the list, and every ciphertext of the permuted list is re-encrypted using
a fresh randomization. If ¥, denotes the set of all permutations of size N, then
1) < W denotes picking a permutation uniformly at random, and j = (i) denotes
the application of 1 : [1, N] — [1, N] to an input index i. The re-encryption
(a,b) < ReEncei(e,r) of an ElGamal ciphertext ¢ = (a,b) is a new ciphertext
(a@,b) = (a,b) - Encer(1,7) = (a- g",b- ek”) for a fresh randomization r < Z,.

By putting everything together, cryptographic shuffling can be defined by
é < Shuffle.;(e, v, r), where € = (€1,...,¢éx) denotes the shuffled list of re-
encrypted ciphertexts é; = ReEncer(e;,7;) for j = ¢(). To prove the correctness
of the shuffle, authorities need to provide a non-interactive shuffle proof,

rehuffle £ NIZKP[(¢), 1) : & = Shufflecx (e, 1, 1)],

which can be verified by Verify(7"fe ek, e, &) € {0,1}. We require such shuffle
proofs twice in our protocol. In one of the two cases, we will need to ensure that
the permutation used in the shuffle corresponds to an existing permutation com-
mitment ¢ < Commit(¢, r). In existing constructions [2,13], such commitments
are part of the proof generation and included in 75"“ffe, Therefore, by assuming

Private Internet Voting on Untrusted Voting Devices 7

that the same algorithm generates the permutation commitment and the shuffle
proof simultaneously, we can use a slightly abusive notation,

(rshuffle e r) & NIZKP[(¢),) : & = Shuffle.s (e, 1,)],

for the proof generation and include ¢ as an additional argument for the proof
verification. For further details on theses proofs, we refer again to the literature
or to the pseudocode algorithms given in [4, Sections 5.5 and 8.4].

3 Protocol Description

Our new Internet voting protocol consists of three consecutive phases called
pre-election, election, and post-election. To specify the technical details of the
protocol, we provide separate subsections for each of them. As a preparatory
step at the beginning of this section, we define the set of election parameters, the
protocol parties and communication channels, and the protocol’s general idea.

3.1 Election Parameters

In the discussion of the election model in Section 1.1, we already decided to
restrict our approach to single m-out-of-n elections, where n denotes the number
of candidates (or voting options) and m < n the maximal number of candidates
to choose. For each election, we assign a unique election identifier U and an
election description ED. Furthermore, we assign a unique candidate description
CD; to each candidate, and for an electorate of size IV, we assign a unique voter
description VD, to each voter i. If c = (CD1,...,CD,)and v = (VDy,..., VDy)
denote the vectors of all candidate and voter descriptions, respectively, then

EP =(U,ED,m,n,N,c,v)

denotes the complete set of election parameters (note that n = |c| and N = |v|
are redundant, but we prefer to list them explicitly). Without loss of generality,
we assume that U, ED, CD;, and VD; are strings from a given alphabet. We
also assume that these strings contain sufficient information for their specific
purposes (for example, VD; may contain the voter’s name and address to enable
the production of address labels by the printing service). In Figure 1, for example,
we have U = "CH23-03", ED = "Do you accept the tax law?",m =1,n =2,
CD, ="YES”, CDy ="N0”, and ¢ = 1823 (N and v are unspecified).

3.2 Protocol Parties and Communication

We distinguish five different types of protocol parties. In an implementation of
the protocol, the administrator, the election authorities, and the printing service
form the system’s core infrastructure, which can be used in the same constellation
for multiple elections. The voters are members of the electorate of a given election
and the voting clients are the personal devices used by the voters for casting the
vote. The following list describes the roles of the five party types.

8 R. Haennni et al.

Administrator. To run an election, the administrator specifies the election
parameters EP, launches the three protocol phases, and finally assembles and
announces the election result. The administrator does not generate or possess
any cryptographic secrets other than a private signature key.

Election Authorities. In the pre-election phase, the election authorities gener-
ate a common encryption key, a common signature key, and the contents of the
voting and confirmation cards in a distributed manner. During the election,
they respond to submitted ballots and confirmations, and in the post-election
phase, they shuffle and decrypt the list of encrypted votes. To ensure the
correctness of the election and the privacy of the votes, it is assumed that at
least one election authority is honest. They all possess a private signature key.

Printing Service. The printing service is responsible for printing the voting
and confirmation cards and sending them to the voters. For this, it receives
shares of the values to be printed from the election authorities. The printing
service is trusted to assemble these shares in a deterministic manner, print
them on paper, and protect the confidentiality of the received data. Otherwise,
the printing service does not generate or possess any cryptographic secrets.

Voters. The voters are the main actors in the protocol. Using the voting and
confirmation cards obtained from the printing service over postal mail, honest
voters submit their votes according to the procedure described in Section 1.1.
Dishonest voters may deviate from the protocol, but not if this affects the
validity of the submitted vote. This implies that they keep the voting and
confirmation cards secret, even in the presence of a vote buyer or coercer.

Voting Clients. The functionality of the voting clients is restricted to scanning
and submitting the QR codes to the election authorities and displaying their
responses to the voters. Since they are potentially dishonest, they do not
generate or possess any cryptographic secrets.

To authenticate the communication channels between the infrastructure parties,
we assume that the administrator and the election authorities use their private
signature keys to sign all outgoing messages, and that all infrastructure parties
accept incoming messages only if they contain a valid signature. Furthermore,
we assume that the channels from the election authorities to the printing service
and from the printing service to the voters are confidential.

Note that we do not explicitly impose the existence a public bulletin board.
As we will see, every election authority in our protocol keeps a full record of all
the public election data. By considering the union of their records as input for
the verification, it is sufficient to have at least one honest authority for reaching
a consensus about the relevant election data. This approach is consistent with
the current practice and legislation in Switzerland.

3.3 General Protocol Idea

From a cryptographic point of view, the main protocol idea is to prepare for
each voter a list of ciphertexts for all n possible voting options. For this, the
election authorities apply a verifiable mix-net to an initial list of trivial ElGamal

Private Internet Voting on Untrusted Voting Devices 9

ciphertexts e; = Encer(I'(5),0) = (1,1'(j)) for all candidates j € [1,n]. This
leads to a matrix E = (€ij) nxn of encrypted votes, in which each row 4 contains
encryptions of all candidates in permuted order ;. The correctness of this matrix
can be publicly verified by checking the shuffle proofs from the mix-net.

To submit a vote for candidate s € [1,n], the voter with voting card index
i needs to know the right column index j = ;(s) in row i of the matrix E
and submit it to the election authorities. In other words, by submitting a ballot
b= (U,1,7) to the authorities, the voter expresses the intention to vote in election
U for candidate s = ¢, 1(j). The authorities can then pick the encrypted vote &;;
from E and add it to the ballot box. While this is the basic idea of the protocol,
it is clear that additional security measures need to be taken.

To prevent ballot stuffing, the election authorities generate BLS signatures
oi; = Sign,,(U,4,7) in a distributed manner for all pairs (4, 7) € [1, N] x [1,n].
To cast a valid vote, voters must then submit an extended ballot b = (U, 1, j, 0y;),
which includes a valid signature o;; for (U, 1, 7). This is exactly the information
that needs to be included in the QR code assigned to the voting option s. If
we assume that the two voting options have been swapped in the mix-net of
the example given in Figure 1, then the QR code assigned to the second voting
option NO (s = 2) could be an encoding of the URL string

https://www.qrvote.ch?U=CH23-03%1=1823&j=1&sigma=7BM8qd0u08gwVKpjmZ9
hf1u0+KSotcq4DWeFgcXgn2v1oWJbYLHUcl+wpUaZJgoR ,

which directs the browser to the specified web server and submits the ballot
b= ("CH22-12",1823, 1, 0) included in the query string to the election authorities.
In this particular example, o is a Base64-encoded BLS signature of length
64 %6 = 384 bits (48 bytes), which corresponds to an element of G in BLS12-381.
If o is a valid signature, the authorities respond with a share of the corresponding
verification code. The aggregation of these shares is displayed to the voter.

In an election with m > 1 possible selections, the authorities accept such
incoming ballots until the size of the voter’s ballot box reaches m. To confirm
the vote, the voter submits a similar tuple ¢ = (U, i, 0;), where o; = Sign;, (U, %)
is an aggregated BLS signature of (U, 1), which represents the voter’s intention
to confirm the vote in election U. Again, if ¢ contains a valid signature, the
authorities respond with a share of the corresponding participation code, and an
aggregation of these shares is displayed to the voter.

3.4 Pre-Election Phase

The pre-election phase begins with an initial message EP from the administrator
to the election authorities. Upon receiving this message, the election authorities
generate a common ElGamal encryption key ek and a common BLS signature
key vk by exchanging corresponding key shares. In Figure 2, the key shares are
generated in Step2a and the key aggregation takes place in Step2b.

In the next step of the pre-election phase, the election authorities generate
the ciphertext matrix E, in which each row contains ciphertexts for all candidates
in permuted order. In Figure 2, the initialization of this list is shown in Step3a,

10 R. Haennni et al.

’ Administrator ‘ ’ Election Authority & € [1, 5] ‘ ’ Election Authority ¢ # k

Stept

[Seleet EP = (U,ED,m,n,N,c,v) }
T

|
|
|
EP I
Step2a }

(dky, eky,) < KeyGenEnc()
(sky, vki,) < KeyGenSig()
7 & NIZKP[(dk, sk) : ek = g% A vk = g5]

ek, vk, T

ekg, vk, ’/T;

T
I
|
T
1
Step2b !
If3e: Verify(rr;ey, ekg,vke) = 0, abort
ek szl eky, vk <+ HZ:I vk,

Step3a }

For j € [1,n] do:

| ej « Encer(I'(j),0)

For i € [1, N] do:
€0 (ej)n

Step3b (upon receiving previous shuffle) |

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!
I

For i € [1, N] do: |
I
I
I
I
I
I
I
I
I
I
|
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L

&1, < Shuffle.r(€; x—1, Yik, i)

(W?Z“f"?om Tik) < NIZKP[(ig, vir,) © €, =Shufflecs, (& 51, Vi, Tir)]
i ¢ (cik) Ny Y < (k) v T = (rie)

(k) N, (m5hoTMe) v,

shuffle

|
|
| (&) N, (75", ek
|

Step3c |

E « (&is)n = (€ij)Nxn

I~f 3(4,) : Verify(nshufe ek, &; 1,80, ci0) = 0, abort
hy < hash(cy, ..., c;)

Step4 I
For i € [1,N] do:
For j € [1,n] do:
VW « Sign,y,, (Ui,)
veijr < {0,1}F
ok, Signgy, (U, 1)
peg, < {0,135
Sk« (0ijk)Nxn> Sk = (Cik)N
Vi = (veisk) Ny Pr 4 (Pesg) N

Fig. 2: First part of the pre-election phase: Election setup (Stepl), key generation
(Step2), ciphertext preparation (Step3), signature and code generation (Step4).

the shuffling in Step3b, and the assembling of the matrix E in Step3c. As a side-
product of this procedure, each election authorities receives a list of permutation
commitments ¢, from all other authorities £ # k. The hash hy = (cq,...,cs)
of these commitments is used to demonstrate to the printing service that a
consensus have been reached among the election authorities about the outcome of
the mixing. Another side-product are the commitment randomizations ry, which
are given to the printing service for opening the commitments.

In Step4 of the pre-election phase, the election authorities prepare the shares
oiji of the BLS signatures for the ballots b;; = (U, 1, j, 0;;) and the shares vc;jy
of corresponding verification codes vc;;. Similarly, they prepare the shares oy
of the BLS signatures for the confirmations ¢; = (U, i,0;) and the shares pc;,

Private Internet Voting on Untrusted Voting Devices 11

Administrator ‘ ’ Printing Service ‘ ’ Election Authority k € [1, s|

EP

I
| ki, Chs ks Thy Sky Sky Vi, Phy Mk
Step5a 3
If 3k : hash(cy, ..., ¢s) # hy, abort
If 3(i, k) : Verify(cik, Yik, i) = 0, abort
For i € [1,N] do:

Yi &= Pis 00y

Step5b |
ok < [T, vk

If 3(4, j, k) : Verify, i (oiji, (U,4, 7)) = 0, abort

If 3(i, k) : Verify, (o, (U, 1)) = 0, abort

For i € [1,N] do:
For j € [1,n] do:

T
| |
‘ I
I I
I]
I 1
I I
I I
I I
I I
I I
I I
I I
I I
I I
I : I
| | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| . |
| 0ij < [y oige i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I
I
I
I
I
I
I
I
I
|
I

veij < hashr,(vei g, ..., veijs)
oi ¢+ ITioyoin
pe; < hashg (pe;y, ... pe; o) Voter

T T
Step5c !

I
I
For i € [1,N] do: |
For j € [1,n] do: i
| @Ry, « arEncode(biy), for bi; = (U,i, 5, 0i;) !
For j € [1,n] do: i
LVCU « (i,U,ED, CDy, QRIYU,’J,’UCL@-“), for i; = 1i(j) }
QR; «+ qrEncode(c;), for ¢; = (U.i,0;) i
CC; + (i,U, QR;, pc;) |

|

|

|

|

1
i VD, (VCij)a, CCi
I

Fig.3: Second part of the pre-election phase: Permutation composition (Stepba),
signature and code aggregation (Step5b), voting card preparation (Step5c).

of corresponding participation codes pc;. These codes are random bit strings of
length L and K, respectively (in the example from Figure 1, we have L = 16 and
K = 40). Finally, the share vk of the verification key, the commitments c, the
random permutation ¢, the randomizations ry, the shares Sy and s of the BLS
signatures, the shares Vi and pj of the verifications and confirmation codes, and
the hash value hj of the commitments are sent to the printer.

The above messages launch the printing process. In Stepba of Figure 3, the
printing service first checks the consistency and validity of the permutation
commitments and then combines the permutations into ; = ¢; s0--- 0, ; for
every i € [1, N]. Similarly, in Step5b, the printing serving checks the validity of the
received signatures and then computes their aggregations o;; and o;. The same
happens for the verification codes vc;; and participation codes pc;. From these
values, the printing service assembles the voting cards VC;; and confirmation
cards CCj, such that everything from Figure 1 is included at the right place. The
cards are printed and sent to the voters over a confidential channel.

3.5 Election Phase

The election phase is shown in Figure 4. It consists of three consecutive steps. In
Stepl, the election authorities initialize their ballot boxes B;x (one for each voter)

12 R. Haennni et al.

’ Voter ‘ ’ Voting Client ‘ ’ Election Authority k € [1, s| ‘

Step1 i 3 Step1

[Initialize S « 0 } Initialize By, < 0, for ¢ € [1, N]
Initialize Cy, + 0

Step2a |

Select s € {1,...,n}\ S
Extract (QR,, vey) from VO

Step2b

Step2c

i
| (0.i,4,0) ¢ bs

| If U # U, abort

! If Verify, (o, (U, i, 7)) = 0, abort
} If bs € By, abort

| If | Bix| = m, abort

} If (i,-) € Ck, abort

| Big < By U {bs}

! VCk 4= VCijk

1

Step2d

/
vc vek
ve! < hashp,(vey, ..., veg) Ll

Step2e

If we’ # veg, abort
S« Su{s}
If | S| < m, goto Step2a or continue

[Extract (QR, pc) from CC }

Step3a

Step3b |

QR ¢ < qrDecode(QR) ‘
i

Step3c

(U,i,0) ¢

If U # U, abort

If Verify, (o, (U,)) = 0, abort
Cy + CrpU{c}

PC <= PCix

|
|
|
|
|
|
|
I
I
Step3d |

pc’ < hashy,(pcy, ..., pcy)
|
|
|

pc

Step3e !

If pc’ # pe, goto Step3a or complain J

Fig. 4: Overview of the election phase: Initialization (Stepl), vote casting (Step2),
vote confirmation (Step3).

and their confirmation box Cj. A voter, who has selected voting option s € [1,n)
and is ready to vote, uses the personal device to scan R, on the voting card,
decode QR, into b,, and send the ballot to the election authorities (Step2a—2b).
If the ballot is valid and fresh, and if the size of the ballot box is less than m and
the vote has not been confirmed yet, it is accepted into the ballot box and the
share of the verification code is returned (Step2c). The voting client assembles
the shares and displays the code to the voter (Step2d). The voter checks the
verification code and then decides to submit further ballots or confirm (Step2e).
The procedure for the vote confirmation is almost identical, i.e., the voter
uses the personal device to scan R, decode it into ¢, and send the confirmation
to the election authorities (Step3a—3b). They check its validity and return their
share of the participation code (Step3c). The voting client assembles the shares
and displays the code to the voter (Step3d). Finally, the voter terminates the
vote casting procedure by checking the participation code (Step3e). Note that
the confirmation can be repeated multiple times, possibly on different devices.

Private Internet Voting on Untrusted Voting Devices 13

Administrator ‘ ’ Election Authority k € [1, s ‘ ’ Election Authority ¢ # k

(Bir)n, Ck
(Bie)n, Ce

Stept
For i € [1,N] do:
| B; + Uj_,Bix
C + Up_,Cy

T
I

I

I

I

|

I

|

I

I

I

I

!

} Step2 |
| E«0

! For ¢ € C do:

} (U,i,0) ¢

| If (U=U) A Verify,,; (o, (U, 1)) = 1, do:
| Ei+0

} For b € B; do:
|
|
|
|
|
|
|
|
|
|
|
I
|
|
I
|
I
I
I
I
I
|
L
i

(U,i,j,0) < b
If (U=U) A Verify,.(o, (U,i,5)) = 1, do:
LSelecL é;j from E
E; + B; U{&;}
If |E;| < m, do:
€i H@,EIQ €ij
E« EU{&)
e « sort(E)

Step3 |

[Mix and decrypt e J

Partial decryptions and decryption proofs

|
|
]
|
Step4 | |
|
|
|

[Verify proofs, decode and tally votes }

Fig.5: Overview of the post-election phase: ballot and confirmation box synchro-
nization (Stepl), extraction of valid ciphertexts (Step2), mixing and decryption
(Step3), decoding and tallying (Step4).

3.6 Post-Election Phase

At the end of the voting period, the election authorities first need to synchronize
their ballot and confirmation boxes. This step might not be necessary in a normal
protocol run, but there is no general guarantee that all submitted ballots and
confirmations have reached all authorities. In Figure 5, the synchronization takes
place in Stepl. To ensure that the resulting sets B; and C only contain valid
and confirmed votes, it is necessary to verify the included BLS signatures and to
check that the total number of ballots does not exceed m. If this is the case for
the ballots of a given voter, we use the homomorphic property of ElGamal to
merge the included ciphertexts. Therefore, the resulting set E of encrypted votes
contains at most one entry for each voter. To obtain an unambiguous mix-net
input from Step2 of Figure 5, we consider the list e obtained from sorting F.
For the two remaining steps of the post-election phase, space constraints
in Figure 5 do not allow us to give further details. In Step3, the list e of
encrypted votes is mixed in a procedure similar to Step3 from Figure 2, and
the resulting shuffled list € is decrypted in a distributed manner as explained
in Section 2.1. In Step4, the administrator assembles the plaintext votes from
the partial decryptions and obtains the election result from applying I'~! to the
plaintext votes. The correctness of the obtained election result is guaranteed by

corresponding non-interactive zero-knowledge proofs e and rshuffle,

14 R. Haennni et al.

4 Security Discussion

We consider the usual active polynomial-time adversary, who might want to break
vote privacy or manipulate the election result. The adversary may therefore try
to corrupt as many protocol parties as needed, but we assume that the printing
service and at least one election authority remain honest under all circumstances,
i.e., they follow the protocol faithfully and do no disclose any of their secrets to
another party. In this model, our protocol tries to achieve covert security [1,12],
which means that corrupt parties are only cheating as long as the cheating
remains undetectable and therefore has no consequences. Within this model, we
also assume that voters keep their voting and confirmation cards secret from
vote buyers and coercers, possibly because they fear legal consequences (see
Section 3.2).

Below, we will briefly discuss the security properties of our protocol in the
covert adversary model by giving some informal arguments relative to vote privacy
and vote integrity. Verifiability arguments are the same as in other protocols
based on verification codes.

Vote Privacy: Let the adversary know the assignment of the voting card indices
i to the voters. A first possibility for breaking vote privacy would be to learn
the combined permutation 1; or randomization r; from the pre-election mix-
net, but both ; and r; are only known to the trusted printing service and
to the trusted group of election authorities (of which at least one is assumed
trustworthy). The second possibility would be to learn the permutation v or
randomization r of the post-election mix-net, and the third possibility would
be to learn the aggregated private decryption key dk. In both cases cases, the
necessary secrets are only known to the trusted group of election authorities.

Vote Integrity: For a confirmed ballot b;; to appear in the final tally, both

bi; and ¢; it must contain a valid BLS signature. Thus, a first possibility for
ballot stuffing would be to generate extra signatures, but this requires the
aggregated private signing key sk, which is known only to the trusted group
of election authorities (of which at least one is assumed trustworthy). The
second possibility would be to use the unused ballots from abstaining voters,
but these ballots are only known to the trusted printing authority and to
the abstaining voters themselves, who are trusted for keeping corresponding
voting cards secret.
For a submitted and confirmed ballot b;; to drop out from the final tally,
there are three possibilities: first, by preventing either b;; or ¢; from reaching
the election authorities (but this would be detected by the voter performing
the cast-as-intended and recorded-as-cast verification), second, by removing
b;; or ¢; from the ballot boxes of all election authorities (which contradicts
the assumption that at least one election authority is honest), and third, by
adding additional ballots to the ballot box of at least one election authority,
such that the total number of ballots exceeds m (this case can be excluded for
the same reasons as ballot stuffing).

Private Internet Voting on Untrusted Voting Devices 15

5 Conclusion

The new Internet voting protocol proposed in this paper can be seen as a modern
version of Chaum’s code voting scheme, in which usability concerns have been
solved using the QR code scanning functionality of mobile devices and trust
assumptions have been distributed to a group of election authorities, of which
only one needs to be honest to prevent or detect privacy and integrity attacks.
In this way, we achieve security in the covert adversary model, which is often
sufficient. From the voter’s perspective, the vote casting procedure in referendums
or elections with a small number of candidates is intuitive, efficient, and secure.
Whether this statement still holds for more complex elections is an open question.
Another open issue is the current lack of a formal security proof.

References

1. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for
realistic adversaries. Journal of Cryptology 23(2), 281-343 (2010)

2. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuf-
fle. In: EUROCRYPT’12, 31st Annual International Conference on Theory and
Applications of Cryptographic Techniques. pp. 263-280. Cambridge, UK (2012)

3. Chaum, D.: Surevote: Technical overview. In: WOTE’01, 1st Workshop On Trust-
worthy Elections. Tomales Bay, USA (2001)

4. Haenni, R., Koenig, R.E., Locher, P., Dubuis, E.: CHVote protocol specification —
version 3.4. IACR Cryptology ePrint Archive 2017/325 (2022)

5. Joaquim, R., Ribeiro, C., Ferreira, P.: VeryVote: A voter verifiable code voting
system. In: VoteID’09, 2nd International Conference on E-Voting and Identity, pp.
106-121, Luxembourg (2009)

6. Kulyk, O., Ludwig, J., Volkamer, M., Koenig, R.E., Locher, P.: Usable verifiable
secrecy-preserving e-voting. In: E-Vote-ID’21, 6th International Joint Conference
on Electronic Voting. pp. 337-353. Bregenz, Austria (2021)

7. Oppliger, R.: How to address the secure platform problem for remote internet
voting. In: SIS’02, 5th Conference on “Sicherheit in Informationssystemen”. pp.
153-173. Vienna, Austria (2002)

8. Renold, H., Esseiva, O., Hofer, T.: Swiss Post Voting System — System Specification
— Version 1.2.0. Tech. rep., Swiss Post Ltd., Bern, Switzerland (2022)

9. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In: EUROCRYPT’07, 26th International
Conference on the Theory and Applications of Cryptographic Techniques. pp.
228-245. Barcelona, Spain (2007)

10. Ryan, P. Y. A., Teague, V.: Pretty good democracy. In: SPW’09, 17th International
Workshop on Security Protocols. pp. 111-130. Cambridge, U.K. (2009)

11. Sakemi, Y., Kobayashi, T., Saito, T., Wahby, R.S.: Pairing-friendly curves. Internet-
draft, Internet Engineering Task Force (IETF) (2022)

12. Scholl, P., Simkin, M., Siniscalchi, L.: Multiparty computation with covert security
and public verifiability. IACR Cryptology ePrint Archive 2021/366 (2021)

13. Terelius, B., Wikstrom, D.: Proofs of restricted shuffles. In: AFRICACRYPT’10,
3rd International Conference on Cryptology in Africa. pp. 100-113. LNCS 6055,
Stellenbosch, South Africa (2010)

	CHVotePlus: Private Internet Voting on Untrusted Voting Devices

