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Abstract. Modern web applications using advanced cryptographic meth-
ods may need to calculate a large number of modular exponentiations.
Performing such calculations in the web browser efficiently is a known
problem. We propose a solution to this problem based on outsourcing
the computational effort to untrusted exponentiation servers. We present
several efficient outsourcing protocols for different settings and a practi-
cal implementation consisting of a JavaScript client library and a server
application. Compared to browser-only computation, our solution im-
proves the overall computation time by an order of magnitude.

1 Introduction

Due to the limited performance of interpreted JavaScript code, web browsers
are relatively slow computational environments compared to high-performance
servers running compiled native or pre-compiled VM code. With recent perfor-
mance improvements of the most common JavaScript engines, this is no longer
a real limitation for most modern web applications. However, exceptionally ex-
pensive client-side computations are required in applications of public-key cryp-
tography. Usually, the most critical operation in such applications is modular
exponentiation (modexp), i.e., the computation of z = xy mod n for given inte-
ger inputs x, y, and n of length 2048 bits or higher. While web browsers compute
modexps efficiently to establish TLS connections to servers, JavaScript develop-
ers have no built-in access to such a primitive, not even using the recently stan-
dardized Web Cryptography API.1 To allow the development of cryptographic
code in JavaScript, several libraries provide an API for dealing with large inte-
gers and an implementation of the most important arithmetic operations. With
the best libraries available today, computing a small number of modexps is pos-
sible in a modern web browser, but the performance is more than one order of
magnitude inferior compared to native code.2

1The Web Cryptography API offers operations for Diffie-Hellman key exchanges
and DSA signatures, but currently only elliptic curves are supported. Therefore, we do
not see a way of exploiting this interface for computing modular exponentiations.

2We expect significant performance improvements in libraries making use of the
recently introduced WebAssembly technology for web browsers.



If a large number of modexps needs to be computed in a cryptographic appli-
cation, the limited performance of JavaScript leads to major usability problems.
In such cases, calculating the modexps may take several minutes, which is not
tolerated by most users. Examples of such applications exist in the context of
cryptographic voting protocols. In [5,6], for example, the web client used for
vote casting requires up to 2k modexps in a k-out-of-n election. In parliamen-
tary elections, where k represents the number of seats and n the number of
candidates, it can happen that several hundred modexps need to be computed
in the web browser for these protocols. The problem gets even worse in advanced
voting protocols with extended security properties. For instance, in the protocol
presented in [9], depending on the size of the electorate and the chosen security
parameters, several thousand modexps may be required for ensuring everlasting
privacy while casting a vote. Cases like this cannot be handled in reasonable
time by JavaScript engines in current web browsers.

To solve this problem, we propose to outsource modexp computations to ex-
ternal exponentiation servers. Note that modexp computations in cryptographic
applications often involve secret values such as private keys or encryption ran-
domizations. Therefore, the main challenge of this approach is to ensure that
the input parameters—the base x, the exponent y, or both x and y—and the
output parameter z remain secret, even if exponentiation servers are not fully
trustworthy (the modulus n is usually a public parameter). Secret parameters
must therefore be cryptographically blinded before sending them out. Another
challenge is to ensure the correctness of the results in the presence of servers that
may act maliciously, or at least to detect such attacks with adequate probabil-
ity. Client-side algorithms for dealing with these challenges must do so without
falling back on expensive operations.

A very different, but more common approach to speed up expensive cryp-
tographic computations on limited devices is working with elliptic curves. For
providing equivalent security, point multiplications on such curves are signifi-
cantly faster than exponentiations in modular groups. The main problem with
elliptic curves in voting protocols such as the ones mentioned above is the diffi-
culty of encoding complex voting options as curve points (while preserving the
encryption homomorphism). In [5,6], for example, voting options are encoded
as a product of prime numbers. Using modular groups, such products can be
efficiently aggregated under encryption and decoded after decryption. We are
not aware of an equivalent encoding for elliptic curves.

1.1 Related Work

There is a large amount of literature about outsourcing modular exponentia-
tions. The approaches can be classified along two lines. The first is the number
of required exponentiation servers. There are approaches for one, two, or four
servers. In the two-server and four-server cases, it is assumed that the servers
do not collude and that they can be reached over confidential channels. No
such assumptions exist in the one-server case. Server-side authentication is a
requirement in all cases to ensure the origin of the server responses. The second



classification criterion is the adversary model attributed to the exponentiation
servers. The main differentiation is between semi-honest and malicious servers.
In the semi-honest model, no particular measures need to be taken to ensure the
correctness of the responses.

A comprehensive analysis and compilation of one-server protocols for semi-
honest adversaries can be found in [3]. This document also contains proven opti-
mality results for certain protocols in form of lower bounds for the total number
of necessary modular multiplications. The main drawback of most one-server
protocols is the assumption that random pairs (r, gr mod n) can be generated
efficiently by the client, where g is a fixed value. This may be difficult to achieve
in a web application. Some protocols also require a large number of modular
multiplications on the client, which reduces the potential performance gain of
the outsourcing process. Similar remarks hold for the protocols presented in [1,8],
which consider the one-server case in the presence of malicious adversaries.

The main reference in the literature on two-server outsourcing protocols is the
paper by Hohenberger and Lysyanskaya [7]. They introduced a property called β-
checkability, which means that deviations from the protocol by malicious servers
are detected by the client with probability β or greater. Some other authors
proposed similar protocols with improved efficiency [2,12]. A very different two-
server approach based on the subset-sum-problem has been proposed in [10]. For
a more detailed overview of the available references and methods, we refer to
the summary given in [11].

1.2 Contribution and Paper Overview

The contribution of this paper consist of three parts. In Section 2, we present
outsourcing protocols for some of the most important settings. Except for the
number of involved servers, our protocols are the most efficient ones in the liter-
ature, with only up to two client-side modular multiplications during the execu-
tion of the protocols. A detailed performance comparison is shown in Table 1.

The second contribution is the implementation of the outsourcing protocols
from Section 2. To the best of our knowledge, such an implementation has not
yet existed before. To enable the embedding of our implementation in a practi-
cal system, we provide a client library in JavaScript, which handles the secure
communication with the servers and executes the outsourcing algorithms. The
flexible architecture of this library enables the inclusion of further outsourcing al-
gorithms from the literature. We also provide a server application in Java, which
can be deployed on ordinary server infrastructure. Details of our implementation
are given in Section 3.

The third contribution of this paper is the experimental performance analysis
of our implementation in Section 4. Compared to browser-only computation, the
analysis shows that our implementation improves the overall computation time
by an order of magnitude. In the two use cases mentioned in the introduction,
in which a large number of modexps need to be computed for casting a vote in
the web browser, this solves the aforementioned usability problem. In Section 5,
we summarize our findings and mention some remaining open problems.



Paper
Protocol Secret Number of

β
Name Base Exp. Servers ModExps Mult. Inv. Rand.

Protocol 7 yes no 1 2 3 1 3 0

[3] Protocol 5 no yes 1 s ≥ 1 log p
s+1

– – 0

Protocol 6 yes yes 1 s ≥ 2 log p
s

– 2 0

this

Algorithm 1 yes no 2 1 2 – – 0

Algorithm 2 no yes 2 1 1 – – 0

Algorithm 3 yes no 2 2 2 – – 1/2

Algorithm 4 no yes 2 2 1 – – 1/2

[7] Exp yes yes 2 4 9 5 6 1/2

[2] Exp yes yes 2 3 7 3 5 2/3

Table 1: Performance comparison of different outsourcing protocols. Each row of the
table shows the number of servers involved in the corresponding protocol, the number
of modexps computed by each server, the number of modular multiplications computed
by the client, the number of multiplicative inverses computed by the client, the number
of random pairs (r, gr mod n) generated by the client, and the checkability factor β.
Some one-server protocols from [3] are omitted, for example the ones that are limited
to a fixed base or the ones that are special cases of others.

2 Outsourcing Protocols

Most outsourcing algorithms in the literature are based on the same basic prin-
ciples. Privacy is achieved by blinding x and y based on the homomorphic prop-
erty of the exponentiation function, which comes in two flavors, depending on
whether x or y is fixed:

exp(x, y1 + y2) = xy1+y2 = xy1xy2 = exp(x, y1) exp(x, y2),

exp(x1x2, y) = (x1x2)y = xy1x
y
2 = exp(x1, y) exp(x2, y).

These properties also hold if all multiplications are performed modulo n and all
additions modulo φ(n), where φ denotes the Euler function. Since φ(n) cannot
be computed efficiently without knowledge of the prime factors of n, we restrict
ourselves to the particular case where n is prime and φ(n) = n−1. We emphasize
this point by writing xy mod p instead of xy mod n.

From a group theory perspective, we perform exponentiations in the multi-
plicative group Z∗p = {1, . . . , p − 1} of integers modulo p, or in corresponding
subgroups 〈x〉 ⊆ Z∗p generated by x. We denote such a subgroup by Gq = 〈x〉
and assume that its order q (which divides p − 1) is known in the given con-
text. Operations in the exponent can then be computed in the additive group
Zq = {0, . . . , q − 1} of integers modulo q. Note that Z∗p (and large subgroups
Gq ⊆ Z∗p) are by far the most widely used groups in cryptographic applications
based on the discrete logarithm (DL), computational Diffie-Hellman (CDH), or
decisional Diffie-Hellman (DDH) assumption. Other popular groups such as el-
liptic curves are not treated explicitly in this paper. However, all algorithms
presented in this section generalize naturally to arbitrary groups.



In the next subsection, we introduce two of the most basic outsourcing pro-
tocols for semi-honest servers. The first protocol protects the secrecy of x and
the second the secrecy of y (both protocols protect the secrecy of z = xy mod p).
In Section 2.2, we show that each protocol of Section 2.1 can be extended easily
to reach 1/2-checkability in the presence of malicious servers. We present each
two-server protocol by an algorithm ModExp(x, y, p, q, S1, S2) executed by the
client. These algorithms contain calls to Si.ModExp(xi, yi, p), which invoke the
transmission of xi, yi, and p to server i ∈ {1, 2}, and the receipt of the server’s
response over a secure channel. In every protocol, we assume that the servers
are non-colluding.3

2.1 Semi-Honest Servers

In the semi-honest adversary model, it is assumed that every server involved in
the outsourcing protocol executes Si.ModExp(xi, yi, p) faithfully, i.e., the server
always returns the correct result of computing xyi

i mod p to the client.

Secret Base. If the base x ∈ Gq is secret and the exponent y ∈ Zq is public, only y
can be sent in cleartext to the involved servers. However, by decomposing x into
values x1 ∈R Gq (picked uniformly at random from Gq) and x2 = xx−11 mod p,
which implies x = x1x2 mod p, we can apply the homomorphic property of the
exponentiation function,

xy ≡ (x1x2)y ≡ xy1x
y
2 (mod p),

to split the computation of xy mod p into xy1 mod p for the first server and
xy2 mod p for the second server. Since x1 is a random value and x2 is derived from
a random value, x remains entirely hidden from both servers. A disadvantage
of this simple approach is that the client needs to compute the multiplicative
inverse x−1 mod p, which is a relatively expensive operation.

A slightly different approach consists in selecting values x1 ∈R Gq and x2 =
xx1 mod p, which implies x = x−11 x2 mod p. By applying again the homomor-
phic property of the exponentiation function, we obtain

xy ≡ (x−11 x2)y ≡ (x−11 )yxy2 ≡ x
−y
1 xy2 (mod p),

which implies that x−y1 mod p can be given to the first server and xy2 mod p to
the second server. For the same reasons as above, x remains entirely hidden
from both servers. The details of this procedure are depicted in Algorithm 1.
Note that the main computational work for the client consists of two modular
multiplications in Gq (we assume that operations in Zq are negligible).

3Requiring two non-colluding servers is admittedly a strong assumption. We believe
that this assumption can be justified, if adequate organizational measures are put
in place. Otherwise, we suggest extending our protocols to three or more servers or
considering the one-server protocols from [3].



Secret Exponent. In the opposite case of a public base x ∈ Gq and a secret
exponent y ∈ Zq, only x can be sent in cleartext to the involved servers. Here,
a viable solution results directly from applying the homomorphic property of
the exponentiation function to y = y1 + y2 mod q for values y1 ∈R Zq and y2 =
y − y1 mod q:

xy ≡ xy1+y2 ≡ xy1xy2 (mod p).

Algorithm 2 shows the procedure of outsourcing xy1 mod p to the first server
and xy2 mod p to the second server. Since y1 is a random value and y2 is derived
from a random value, y remains entirely hidden from both servers. Here the
workload for the client is a single modular multiplication in Gq.

Algorithm: ModExp(x, y, p, q, S1, S2)

Input: Secret base x ∈ Gq

Public exponent y ∈ Zq

Prime modulus p
Group order q
Semi-honest servers S1, S2

x1 ∈R Gq, x2 ← xx1 mod p
z1 ← S1.ModExp(x1,−y mod q, p)
z2 ← S2.ModExp(x2, y, p)
return z1z2 mod p

Algorithm 1: Two-server outsourcing
protocol for secret base and public ex-
ponent.

Algorithm: ModExp(x, y, p, q, S1, S2)

Input: Public base x ∈ Gq

Secret exponent y ∈ Zq

Prime modulus p
Group order q
Semi-honest servers S1, S2

y1 ∈R Zq, y2 ← y − y1 mod q
z1 ← S1.ModExp(x, y1, p)
z2 ← S2.ModExp(x, y2, p)
return z1z2 mod p

Algorithm 2: Two-server outsourcing
protocol for public base and secret ex-
ponent.

Secret Base and Exponent. If both the base x ∈ Gq and the exponent y ∈ Zq are
secret, we can combine the two protocols from above to hide both secret values
from the servers. The resulting protocol is almost equally efficient for the client
(four multiplications in Gq), but it requires four non-colluding servers, i.e., any
pair of colluding servers can reconstruct at least one of the two secret values.
This is a very strong trust assumption for the protocol to be implemented in a
real-world application. Therefore, we do not discuss this setting and the resulting
protocol in more detail.

2.2 Malicious Servers

In the literature on outsourcing modular exponentiation in the presence of mali-
cious servers, various authors have applied a similar technique to detect a cheat-
ing server [7,2,1]. The idea consists in challenging each involved server with at
least one additional modexp computation, but without letting the server know
which one is the real task and which one the challenge. If xi and yi are the real
parameters and x′i and y′i the challenges for server Si, then this is achieved by
randomizing the order of the calls Si.ModExp(xi, yi, p) and Si.ModExp(x′i, y

′
i, p).

In the simplest possible case, the same random challenge is sent to multiple
servers. The client then checks the consistency of the servers’ responses and



aborts the protocol in case of a mismatch. This general approach can be applied
to both protocols from the previous subsection in slightly different forms.

To pass the above consistency check, a cheating server must respond correctly
to the challenge, but if the challenge and the real task are indistinguishable for
the server, the chance of identifying the challenge is 1/2. If two servers are cheating
simultaneously, the chance of guessing both challenges is 1/4, and if four servers
are cheating, the chance is 1/16. Therefore, the chance that an attack by malicious
servers remains undetected is always at most 1/2, which implies that a protocol
equipped with this technique offers 1/2-checkability. Note that a higher value for
β can be achieved by sending multiple challenges in random order to each server.
Generally, we obtain β = c

c+1 for sending c ≥ 0 challenges in random order to
to each server.

Secret Base. If x ∈ Gq is secret and y ∈ Zq is public, the parameters of the
challenges sent to the servers must be indistinguishable from those of Algo-
rithm 1. Therefore, while choosing the base x′ ∈R Gq at random for making it
indistinguishable from the random values x1 and x2, the same public exponents
must be used, i.e., −y mod q for S1 and y for S2. If we extend Algorithm 1
with corresponding calls S1.ModExp(x′,−y mod q, p) and S2.ModExp(x′, y, p),
and randomize the order of the calls using a random bit r∈R {0, 1}, the client
obtains values z′1 = (x′)−y mod p and z′2 = (x′)y mod p. Their consistency can
be checked by z′1z

′
2 mod p = 1 using a single additional multiplication. This

whole procedure is shown in Algorithm 3.

Secret Exponent. If x ∈ Gq is public and y ∈ Zq is secret, the situation is
reversed. For making the challenge parameters indistinguishable, we must pick a
random exponent y′ ∈R Zq while using the same public base x. This means that
exactly the same challenge Si.ModExp(x, y′, p) is sent to both servers and that
the consistency of their responses, z′i = xy

′
mod p, can be tested by verifying if

they are identical. In Algorithm 4, we show the resulting protocol obtained as
an extension of Algorithm 2.

3 Practical Implementation

Despite the large amount of literature on the subject of outsourcing modular
exponentiation, we were not able to find practical and implemented solutions.
However, for validating the use cases in cryptographic voting protocols from Sec-
tion 1, we require such a practical implementation and we thus provide it as part
of our contribution. We have defined two main objectives for the implementation:

– Providing a robust API for integration into cryptographic web applications.

– Supporting performance measurements and comparisons of different proto-
cols.



Algorithm: ModExp(x, y, p, q, S1, S2)

Input: Secret base x ∈ Gq

Public exponent y ∈ Zq

Prime modulus p
Group order q
Malicious servers S1, S2

x1 ∈R Gq, x2 ← xx1 mod p, x′ ∈R Gq

r∈R {0, 1}
if r = 0 then

z1 ← S1.ModExp(x1,−y mod q, p)
z′1 ← S1.ModExp(x′,−y mod q, p)
z2 ← S2.ModExp(x2, y, p)
z′2 ← S2.ModExp(x′, y, p)

else
z′1 ← S1.ModExp(x′,−y mod q, p)
z1 ← S1.ModExp(x1,−y mod q, p)
z′2 ← S2.ModExp(x′, y, p)
z2 ← S2.ModExp(x2, y, p)

if z′1z
′
2 mod p = 1 then

return z1z2 mod p

else
return ⊥

Algorithm 3: Two-server outsourcing
protocol for secret base and public ex-
ponent with β = 1/2.

Algorithm: ModExp(x, y, p, q, S1, S2)

Input: Public base x ∈ Gq

Secret exponent y ∈ Zq

Prime modulus p
Group order q
Malicious servers S1, S2

y1 ∈R Zq, y2 ← y − y1 mod q, y′ ∈R Zq

r∈R {0, 1}
if r = 0 then

z1 ← S1.ModExp(x, y1, p)
z′1 ← S1.ModExp(x, y′, p)
z2 ← S2.ModExp(x, y2, p)
z′2 ← S2.ModExp(x, y′, p)

else
z′1 ← S1.ModExp(x, y′, p)
z1 ← S1.ModExp(x, y1, p)
z′2 ← S2.ModExp(x, y′, p)
z2 ← S2.ModExp(x, y2, p)

if z′1 = z′2 then
return z1z2 mod p

else
return ⊥

Algorithm 4: Two-server outsourcing
protocol for public base and secret ex-
ponent with β = 1/2.

Our solution, which we call famodulus4, fulfills both objectives. It consists of the
following three logically distinct components:5

– famodulus-client , a JavaScript library for outsourcing modexp calculations
to famodulus-server (in the current version, only Algorithms 2 and 4 are
implemented),

– famodulus-server , an implementation of the exponentiation server,
– famodulus-demo, a comprehensive demonstrator application using famodulus-

client and famodulus-server .

In Sections 3.1 and 3.2, we further describe the famodulus-server and famodulus-
client components. famodulus-demo, which is a simple HTML5 web application
used for testing and demos, consists of a user interface for outsourcing single
or multiple modular exponentiations using famodulus-client to the servers, and
provides support for parameter generation and execution time measurements.
Communication between the client and the servers takes place over a minimal
RESTful interface, which is also described in Section 3.2.

4famodulus is a combination of the Latin words famulus (servant) and modulus
(measure), i.e., famodulus is a servant for modular exponentiation calculations.

5All three components have been released as open-source software under the MIT
license, see https://github.com/mainini/famodulus.

https://github.com/mainini/famodulus


3.1 Client Library

In order to provide an API for cryptographic web applications to outsource
modexp calculations, client code for the web browser currently has to be written
in JavaScript. Our library focuses on clean and robust implementation as well as
on performance and extensibility. Even if a considerable amount of deployed web
browsers are still not supporting the full JavaScript ES6 specification, our library
makes use of some of its advanced functionalities.6 We expect an even broader
adoption for ES6 soon. Where browser upgrades are not easily possible, so-
called polyfills may be loaded by the application to support the missing language
features.

Client-Side Technologies. Recently, JavaScript has also gained importance on the
server side with the rise of Node.js in the last few years.7 Node.js brings a widely
adopted module system, which simplifies development and supports modularity
of JavaScript code. For this reason, famodulus-client has been developed as a
Node.js module, which gets transformed into a single file for the browser using
browserify.8 A side effect of this development model is the simplification of unit
tests, which do not necessarily require a browser for execution. In principle, fa-
modulus-client could thus also be used for outsourcing modexp calculations from
a server running in JavaScript, even though calculating modexps through native
bindings instead of sending them over the network would probably be a more
sensible choice.

Outsourcing protocols require client-side calculations with big integers in
JavaScript, which, as opposed to Java, has no built-in support for such types.
We have thus conducted a small benchmark of libraries for big integer opera-
tions in JavaScript before starting development, focusing on performance for the
required arithmetic operations. Based on the results, two libraries where consid-
ered for famodulus-client , the BigInt library by B. Leemon9 and the Verificatum
JavaScript Cryptographic Library (VJSC)10 by D. Wikström, with the latter
being slightly faster. We finally decided to use Leemon’s library, mostly due to
licensing concerns. While working with this library, we encountered critical effi-
ciency problems with the bigInt2str and str2bigInt functions for converting big
integers into strings and vice versa. By rewriting these functions, we improved
their performance by an order of magnitude.

Modexp Computations. In an application of famodulus-client in the web browser,
a global FamodulusClient object is exported, which is initialized with a list of
exponentiation servers and additional configuration values. After initialization,
functions for outsourcing modexps according to the different protocols can be
invoked. A code example of using famodulus-client for outsourcing a batch of

6See http://www.ecma-international.org/ecma-262/6.0/
7See https://nodejs.org
8See http://browserify.org
9See https://www.npmjs.com/package/BigInt

10See http://www.verificatum.com/html/product vjsc.html

http://www.ecma-international.org/ecma-262/6.0/
https://nodejs.org
http://browserify.org
https://www.npmjs.com/package/BigInt
http://www.verificatum.com/html/product_vjsc.html


const s e r v e r s = [ ’ s e rve r 1 ’ , ’ s e rve r 2 ’ ] ;
const checked = true ;

let fam = new FamodulusClient ( s e rve r s , checked ) ;
fam . decExponent ( [ { b : ’ 2 ’ , e : ’ 4 ’ , m: ’5 ’} ,{b : ’ 4 ’ , e : ’ 2 ’ , m

: ’ 5 ’ } ] ) . then ( r e s u l t => {
// do something wi th r e s u l t

}) ;

Listing 1: Outsourcing two simultaneous modexps to two servers using famodulus-
client and Algorithm 4.

two modexps, 24 mod 5 and 42 mod 5, is shown in Listing 1. The flag checked in
the constructor of the FamodulusClient object indicates that servers are possibly
malicious and that their responses need to be checked using the techniques from
Section 2.2. The function decExponent performs a decomposition of the expo-
nent in order to protect its secrecy. This setting corresponds to the outsourcing
protocol of Algorithm 4. Switching the checked flag to false leads to invocation
of the unchecked version of the protocol in Algorithm 2.

3.2 Exponentiation Server

The main objective of an exponentiation server according to our definition is
to provide efficient modular exponentiation calculations. It should also provide
a convenient interface for submitting calculation tasks and a secure channel for
the transmission of the parameters and the responses. famodulus-server fulfills
these requirements.

Server-Side Technologies. For ease of integration with current electronic voting
projects at our institute, we decided to implement the exponentiation server in
Java. This choice of platform has no influence on the functionality, and we con-
sider porting the exponentiation server to another platform or programming lan-
guage to be straightforward. While Java provides a reasonably efficient modexp
implementation, we have decided to rely upon the native GNU Multiple Precision
Arithmetic Library (GMPLib) for all server-side calculations.11 A short series
of benchmarks conducted during an initial evaluation phase indicates a perfor-
mance gain of roughly a factor of four compared to Java’s built-in BigInteger.
modPow() method. We conducted our measurements using OpenJDK 1.8 on the
Linux platform.

As of today, RESTful interfaces as defined by R. T. Fielding can be con-
sidered state-of-the-art for interaction between web applications and back-end
services on the server side [4]. famodulus-server offers a very simple, yet flexi-
ble RESTful interface to submit modexp calculations and obtain corresponding
results. Its implementation is based on JAX-RS, which specifies an API for

11See https://gmplib.org

https://gmplib.org


RESTful services in Java. While multiple implementations for JAX-RS exist,
we have chosen Jersey, the reference implementation.12 Jersey applications offer
greatest flexibility with support for deployment to various containers. By expect-
ing that famodulus-server will almost always be deployed standalone on a server
for optimal performance, we provide a configuration using the modern Grizzly
standalone HTTP server.13

Modexp Computations. Modular exponentiations are submitted to famodulus-
server over a secure HTTPS connection. Note that using TLS on top of HTTP is
a critical precondition for protecting the secrecy of the parameters in outsourcing
algorithms with multiple servers. The parameters (base, exponent, modulus) are
encoded as JSON data enclosed in the body of the HTTP POST request. The
JSON data format is widely used in RESTful interfaces. A single modexp is
encoded as follows:

{”b ” : Str ing , ”e ” : Str ing , ”m” : S t r ing }

The three attributes "b" (base), "e" (exponent), and "m" (base) are encoded as
hexadecimal strings. The reason for this encoding is the missing data type for
big integers in JavaScript, which makes parsing the JSON data impossible on
the client side when the numbers exceed 253 − 1.

Each request submitted to the server must contain at least one single modexp
in the JSON data format given above, it can however also contain many mod-
exps at the same time. In practical applications, multiple modexps often share
common parameters, for instance the prime modulus. For efficiency reasons, our
JSON data format allows the definition of a common base, a common exponent,
a common modulus, or a combination of common base, exponent, or modulus.
These are the default values for modexps which do not provide the correspond-
ing parameter. The complete message sent in a single HTTP Post request to the
server then looks as follows:

{”b ” : Str ing , ”e ” : Str ing , ”m” : Str ing ,
”modexps ” : [ modexp 1 , . . . , modexp n ] ,
” b r i e f ” : Boolean}

The first three lines are the default parameters, as described above, and may be
omitted individually. The "modexps" attribute is a list of one or multiple mod-
exps declarations, possibly with missing parameters. If parameters are missing,
they are substituted in the calculations by the default values. The final at-
tribute instructs the server to either return the results together with the full
query ("brief": false) or the results only ("brief": true), depending on
the client’s needs.

12See https://jersey.java.net
13See https://grizzly.java.net

https://jersey.java.net
https://grizzly.java.net


4 Performance Analysis

This section describes the experimental performance analysis of famodulus that
we have conducted. All test runs were conducted on a single machine with a
Core i7 CPU (eight cores), running at 1.73 GHz with 8 GB of RAM, and with
an installation of Debian GNU/Linux from the current testing branch. Dur-
ing the experiments, two famodulus-server instances were started by assigning
corresponding processes to different CPU cores. Adherence to this setting was
monitored. Processes which were not required for the experiments, for monitor-
ing, or for the operating system itself have been stopped. Memory consumption
during the experiments was monitored throughout. The experiments themselves
were conducted with an off-the-shelf Firefox 50.1.0 web browser, with no specific
configuration and with network communication taking place over the loop-back
device. Conducting performance tests locally is a reasonable choice for our set-
ting, given the fact that typical Internet network delays are several orders of
magnitude smaller than the effective computing times spent on the servers. The
Firefox process has been pinned to a separate CPU core.

4.1 Server-Only and Browser-Only Computations

The first series of experiments have been conducted on server-only and browser-
only configurations in batches of 50, 100, 500, and 1000 modexps for modulus
bit lengths of 1024, 2048, and 3072 bits.14 The goal was to obtain an estimation
of the performance difference of computing modular exponentiations using the
native GMPLib and the JavaScript engine of the Firefox web browser. We se-
lected the VJSC library for this purpose to obtain the best possible browser-only
results. On the server side, we conducted the measurements using famodulus-
server . Currently, no performance optimizations other than using GMPLib have
been implemented, i.e., modexp computations are computed sequentially on a
single CPU core upon receiving a batch of such tasks.

The results of our experiments are depicted in Table 2. They show that—
depending on the bit lengths of the parameters—executing native code on the
server is up to 18 times faster than corresponding JavaScript calculations in the
web browser. The results also show that the browser-only running times become
problematical from a user perspective for batch sizes of 100 modexps or more
and bit lengths of 2048 bits or more. We get approximately 20 seconds for the
100/2048-setting and more than 10 minutes for the 1000/3072-setting. Batches
of that size are necessary in the use cases mentioned in Section 1. In the server-
only columns of Table 2, the 1000/3072-setting seems to be the only critical case
with a running time of approximately 45 seconds. However, with better server
hardware and by parallelizing the tasks onto different cores or multiple CPUs,
the speed of the server computations can be increased arbitrarily.

14In all our experiments, we selected the smallest prime modulus p of the corre-
sponding bit length. Base and exponent were picked at random from Z∗p and Zp−1,
respectively.



Server-Only Browser-Only Server Adv.

ModExps 1024 2048 3072 1024 2048 3072 1024 2048 3072

50 0.09s 0.73s 2.26s 1.63s 11.02s 31.38s 18.45 15.19 13.87
100 0.18s 1.47s 4.48s 3.32s 22.14s 62.69s 18.89 15.02 13.98
500 0.88s 7.09s 22.57s 16.48s 103.19s 310.78s 18.71 14.55 13.77

1000 1.77s 14.26s 44.90s 33.04s 205.38s 626.62s 18.65 14.40 13.96

Table 2: Performance measurements of server-only (GMPLib) and browser-only
(VJSC Library) modexp computations for different bit lengths. The last three columns
show the relative advantage of server-only over browser-only computations.

4.2 Outsourcing Protocols

To evaluate the performance of the outsourcing protocols implemented in fa-
modulus, we repeated the experiments from the previous subsection using the
same batch sizes and bit lengths. We did the analysis for Algorithms 2 and 4, the
two most efficient protocols from Table 1 with a single client-side modular multi-
plication each. All other algorithms of this paper require only an additional mod-
ular multiplication and are therefore not expected to perform much worse. Since
Algorithm 4 requires each server to compute two modular exponentiations—the
real one and the challenge—for each task in the batch, we expect a performance
loss of up to 50% for each server running on a single core. This expectation gets
confirmed by the measurement results shown in Table 3, especially for the batch
size of 1000 modexps, where the relative overhead of both the client-side compu-
tations and the communication costs gets minimal in comparison with the costs
of the necessary server-side computations. In all such cases, Algorithm 2 runs
roughly 1.7 times faster than Algorithm 4.

The most interesting result of our experimental analysis is the performance
of the outsourcing algorithms implemented in famodulus compared to browser-
only computations. Relative values for 3072-bit parameters are shown in Table 3
(column 5 and 9). In case of Algorithm 2, the outsourcing protocol is approx-
imately 13 times faster than browser-only computations. In comparison with
the factor 14 obtained in the server-only setting for 3072 bits, we conclude that
the overhead for the client and the communication is less than 8% of the total
running time. In case of Algorithm 4, the outsourcing protocol is still between 7
and 8 times faster than client-only computations.

The absolute running times shown in Table 3 only get problematical for
batch sizes of 500 modexps or more with 3072-bit parameters, for example ap-
proximately 80 seconds in the 1000/3072-setting of Algorithm 4. To obtain more
acceptable running times in such extreme use cases, optimizations on the server
side are mandatory. Such optimizations are also required to serve multiple users
simultaneously. Nevertheless, we conclude from our experiments that even with-
out such optimizations on the server side, the outsourcing protocols implemented
in famodulus increase the overall computation time by approximately one order
of magnitude.



Algorithm 2 Adv. Algorithm 4 Adv.

ModExps 1024 2048 3072 3072 1024 2048 3072 3072

50 0.16s 0.88s 2.49s 12.58 0.23s 1.40s 4.09s 7.68
100 0.29s 2.01s 4.86s 12.89 0.46s 2.78s 8.11s 7.73
500 1.36s 8.11s 24.30s 12.79 2.17s 13.32s 40.70s 7.64

1000 2.70s 16.21s 48.21s 13.00 4.27s 26.59s 80.54s 7.78

Table 3: Performance measurements of outsourcing modexp computations using Al-
gorithms 2 and 4 for different bit lengths. Columns 5 and 9 show the relative advantage
of the outsourcing protocols over browser-only computations for 3072-bit parameters.

5 Conclusion

In this paper, we presented our results from studying and implementing se-
cure outsourcing protocols for modular exponentiations in the context of cryp-
tographic web applications. The first conclusion is derived from the theoretical
performance analysis of our protocols compared to existing protocols in the lit-
erature. In Table 1, by giving a summary of the relevant client-side operations,
we have demonstrated that our protocols are much more efficient than compara-
ble two-server protocols from the literature. Similar conclusions can be drawn by
comparing the client-side workload of our protocols with the one-server protocols
from [3]. Their advantage, however, are the weaker underlying trust assumptions,
which result from the public nature of the parameters sent to the server. Imple-
menting these protocols, measuring corresponding running times, and comparing
them to the results from this paper is left for future work.

The second conclusion of this paper results from the experimental perfor-
mance analysis of our protocols in Section 4. In Section 1 we mentioned two use
cases in the context of cryptographic voting protocols, in which a large amount
of modexps need to be computed in the web browser. With our outsourcing
protocols, we managed to reduce unacceptable in-browser running times by an
order of magnitude. By optimizing or upgrading the server performance, fur-
ther improvements of the overall running times are possible. We see at least
three different approaches for server-side optimizations. The first is to execute
the computations on high-performance server hardware, the second is to dis-
tribute the workload to all CPU cores or to a CPU cluster, and the third is to
perform server-side precomputations for fixed-base or fixed-exponent modexps.
The possibility of conducting modexp computations in parallel makes our whole
approach highly scalable. Especially in scenarios with limited battery power
(e.g., mobile devices), we consider this an important property. High scalability
remains an important advantage even if client-side performance is further im-
proved with new technologies such as WebAssembly. Setting up corresponding
server infrastructure and conducting an experimental performance analysis for
such a configuration is another topic left for future work.
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