
Cast-as-Intended Verification in Electronic
Elections Based on Oblivious Transfer

Rolf Haenni, Reto E. Koenig, and Eric Dubuis

Bern University of Applied Sciences, CH-2501 Biel, Switzerland
{rolf.haenni,reto.koenig,eric.dubuis}@bfh.ch

Abstract. In this paper, we propose a new method for cast-as-intended
verification in remote electronic voting. We consider a setting, in which
voters receive personalized verification code sheets from the authorities
over a secure channel. If the codes displayed after submitting a ballot
correspond to the codes printed on the code sheet, a correct ballot must
have been submitted with high probability. Our approach for generating
such codes and transferring them to the voter is based on an existing
oblivious transfer protocol. Compared to existing cast-as-intended verifi-
cation methods, less cryptographic keys are involved and weaker trust and
infrastructure assumptions are required. This reduces the complexity of
the process and improves the performance of certain tasks. By looking at
cast-as-intended verification from the perspective of an oblivious transfer,
our approach also contributes to a better understanding of the problem
and relates it to a well-studied cryptographic area of research.

1 Introduction

In remote electronic voting, voters may not always have access to a trustworthy
platform for creating and casting the ballot. Malware on such a platform may
take control over the vote casting process, for example by submitting a ballot
containing a vote di↵erent from the voter’s intention or by not casting a ballot at
all. Without any counter-measures, such attacks are di�cult to detect and may
remain unnoticed even by a large number of a↵ected voters. Since the correct
outcome of an election is of great significance for the whole electorate, every
infected computer becomes inevitably a problem for everybody. This so-called
secure platform problem is one of the most critical and challenging obstacles in
remote electronic voting [SV12].

Malware attacks against remote electronic voting may aim at violating either
the secrecy or the integrity of the vote (or both). Full protection against both
types of attacks is very hard to achieve. Some approaches suggest using an out-of-
band channel such as regular postal mail as a trust anchor, over which additional
information is transmitted securely to the voters. In this paper, we consider a
setting, in which each voter receives a verification code sheet from the authorities
over such a trusted channel. After submitting the ballot, codes for the chosen
candidates are displayed by the voting application and voters are instructed to
check if the displayed codes match with the codes printed on the verification

277

code sheet. Matching codes imply with high probability that a correct ballot has
been submitted. This step—called cast-as-intended verification—is an e↵ective
counter-measure against integrity attacks by malware on the voting platform, but
obviously not against privacy attacks. Nevertheless, countries such as Norway or
Switzerland have approved this as a su�cient solution for conducting elections
over the Internet [GB12,BK113c].

1.1 Related Work

The idea of printing verification code sheets and distributing them over a trusted
channel to the voters has first been proposed for the Norwegian Internet voting
projects eValg2011 and eValg2013 [GB12]. From a technical point of view, the
cryptographic protocols for the o✏ine generation of the verification code sheets
and the online generation of corresponding return codes for the chosen candidates
have changed slightly in the course of time [Gjø10,Gjø11,Lip11,PG11,PG12], but
the general underlying idea remained the same. Upon receiving one or multiple
encrypted votes from a voter, two non-colluding servers conduct a series of
cryptographic computations to remove the encryption randomizations in such a
way that the plaintext votes are not disclosed. For this mechanism to work, the two
servers must hold shares of the private key, under which the votes are encrypted.
The return codes are then derived from the resulting deterministic values (the
same deterministic values have been computed during the election preparation
phase to enable the printing of the verification code sheets) and delivered over a
separate channel to the voters’ mobile phones. In case of non-matching return
codes, voters are instructed to submit another ballot from a di↵erent platform.
The separate channel for delivering the return codes is necessary to prevent the
malware-infected voting application from learning the return codes when multiple
ballots are submitted by the same voter.

A similar approach has been proposed for the voting system in the canton
of Neuchâtel in Switzerland [GGP15]. In the Swiss context, vote updating by
submitting multiple ballots is explicitly prohibited. This has two important
consequences for the voting process. First, sending the return codes to the voting
application is no longer a threat, even if malware has taken full control over the
voting process. Second, since voters cannot re-submit the ballot from a di↵erent
platform in case of non-matching return codes, ballots can only be accepted after
receiving a correct confirmation code from the voter. In such a case, the server
responds by displaying a finalization code to the voter for inspection.1 Both the
confirmation and the finalization code are printed on the verification code sheet
along with the return codes. In the Neuchâtel protocol as presented in [GGP15],
a matching finalization code implies that the vote has been cast as intended

1 This extended vote casting process is approved by the Swiss Federal Chancellery as a
possible solution for the secure platform problem [BK113a, Appendix 7]. If there is a
mismatch between any of the return codes, voters are instructed to abort the online
voting process and to submit a paper ballot. In case of mismatched finalization codes,
voters are instructed to contact the election administration for an investigation.

278

by the voting application and recorded as cast by the server. Compared to the
Norwegian protocol, the main technical di↵erence is that voters participate in
the generation of the return codes. For this, they receive a private key during
the registration phase. This key replaces one of the two server-side key shares.

A very di↵erent protocol for cast-as-intended verification has been proposed
in [HLv10]. To the best of our knowledge, it is the first and only such protocol
based on oblivious transfer (OT), but it has never been implemented in practice.
The idea is to transmit the return codes to the voters via a third party (the
proxy) using the 1-out-of-n proxy oblivious transfer (POT) protocol from [AIR01].
The choice of using this particular POT protocol has multiple reasons, but most
importantly, it enables voters to prove, in zero-knowledge, that the POT query
and the encrypted vote contain identical plaintexts. To prove the validity of
the encrypted votes, non-interactive range proofs are added to the ballots. The
protocol is designed for the simple case where voters choose a single candidate
from a set of n candidates. Multiple instances of the protocol can be executed
in parallel to support general k-out-of-n limited votes, but the protocol is very
ine�cient for such general cases.

1.2 Contribution and Paper Overview

This paper contains two principal contributions. First, we introduce a new method
for cast-as-intended verification, in which the return codes for k candidates are
transmitted by an e�cient k-out-of-n oblivious transfer [CT05]. This particular
protocol requires no additional cryptographic keys and imposes no restrictions
with regard to the space of messages that can be transferred. As a consequence,
generating the return codes during the preparation of an election and transferring
them to the voters during vote casting become two completely independent
processes. We provide a description of a cryptographic voting protocol in Section 3,
which shows how the query for the oblivious transfer can be linked in a natural
way to the encrypted vote. Details about the cryptographic setting and the
oblivious transfer protocol are given in Section 2.

Second, we propose a new technique to guarantee the validity of an encrypted
vote without generating expensive zero-knowledge proofs. For this, we derive the
return codes from random points of a random polynomial p(x)2R Zp[x] of degree
k � 1. This implies that receiving k correct points from the oblivious transfer is
su�cient to interpolate the polynomial, whereas receiving k � 1 or less points
does not provide any information about any other point on the polynomial. As
a consequence, provided that p is large enough, knowing the polynomial p(x)
for a given verification code sheet entails with high probability that both the
original OT query and the encrypted vote contain a valid set of candidates. This
allows us to avoid expensive zero-knowledge proofs for proving the validity of the
encrypted votes. The details of this technique are also included in the protocol
description of Section 3. In Section 4, we discuss the security properties and
performance of our protocol and compare it to existing work. We conclude the
paper in Section 5.

279

2 Cryptographic Preliminaries

Let (G, ·,�1 , 1) be a cyclic group of prime order q, for which the decisional Di�e-
Hellman (DDH) assumption is believed to hold. Since q is prime, every element
x 2 G \ {1} is a generator. At the moment, we do not restrict ourselves to a
particular group, but at some point, we will assume that G is identical to the set
Gq ⇢ Z⇤

p of quadratic residues modulo a safe prime p = 2q + 1.

2.1 Oblivious Transfer

An oblivious transfer is the execution of a protocol between two parties called
sender and receiver. In a k-out-of-n oblivious transfer, denoted by OTk

n, the sender
holds a list m = (m

1

, . . . ,mn) of messages mi 2 {0, 1}`, of which k  n can be
selected by the receiver. The selected messages are transferred to the receiver
such that the sender remains oblivious about the receiver’s selections and that
the receiver learns nothing about the n� k other messages. Let s = (s

1

, . . . , sk)
denote the k selections sj 2 {1, . . . , n} of the receiver and ms = (ms1 , . . . ,msk)
the k messages to transfer. In the simplest possible case of a two-round protocol,
the receiver sends a randomized query Q Query(s, r) of size O(k) to the sender,
the sender replies with a response R Response(Q,m) of size O(n), and the
receiver obtains ms Open(R, r) by removing the randomization r from R. For
the correctness of the protocol, Open(Response(Query(s, r),m), r) = ms must
hold for all possible values of m, s, and r. If a triple (Query,Response,Open) of
such algorithms satisfies this property, we call it a (two-round) OTk

n-scheme.

An OTk
n-scheme is called secure, if the three algorithms guarantee both

receiver privacy and sender privacy. Usually, receiver privacy is defined in terms of
indistinguishability of two selections s

1

and s
2

relative to corresponding queries Q
1

and Q
2

, whereas sender privacy is defined in terms of indistinguishable transcripts
obtained from executing the real and the ideal protocols in the presence of a
malicious receiver (called simulator). In the ideal protocol, s and m are sent to
an incorruptible trusted third party, which forwards ms to the simulator.

There are many general ways of constructing OTk
n-schemes, for example on

the basis of less complex OT1

n or OT1

2

-schemes, but such general constructions are
usually not very e�cient. In this paper, we propose to use the second OTk

n-scheme
presented in [CT05], which satisfies our requirements almost perfectly.2 There
are several public parameters: a description of a group G of prime order q, a
generator g 2 G \ {1}, an encoding � : {1, . . . , n}! G of the possible selections
into G, and a collision-resistant hash function H` : {0, 1}⇤ ! {0, 1}` with output
length `. In Figure 1, we provide a detailed formal description of the protocol.
The query Q is a vector a 2 Gk of length k and the response R is a tuple (b, c, d)
consisting of a vector b 2 Gk of length k, a vector c 2 ({0, 1}`)n of length n, and

2 The modified protocol as presented in [CT08] is slightly more e�cient, but it fits less
into the particular context of this paper.

280

a single value d 2 G. Calls of the algorithms will therefore be denoted by

a Query(s, r),

(b, c, d) Response(a,m, s),

ms Open(b, c, d, r),

where r = (r
1

, . . . , rk)2R Zk
q is the vector of random values used in computing the

query and s2R Zq an additional random value used in computing the response.
Both Query and Open require k fixed-base exponentiations in G, whereas Response
requires n+ k + 1 fixed-exponent exponentiations in G. Note that among the 2k
exponentiations of the receiver, k can be pre-computed, and among the n+ k+ 1
exponentiations of the sender, n+1 can be pre-computed. Therefore, only k online
exponentiations remain for both the receiver and the sender, i.e., the protocol is
very e�cient in terms of computation and communication costs. In the random
oracle model, the scheme is provably secure against a malicious receiver and
a semi-honest sender.3 Receiver privacy is unconditional and sender privacy is
computational under the chosen-target computational Di�e-Hellman (CT-CDH)
assumption, which is a weaker assumption than standard CDH [Bol03].

2.2 ElGamal Encryption and Extended Pedersen Commitments

In the case of the ElGamal encryption scheme, a group G of prime order q and a
generator g 2 G\{1} are usually fixed as public parameters. If this is the case, the
scheme consists of the following three algorithms: (1) a randomized key generation
algorithm (sk, pk) KeyGen(), which picks sk2R Zq uniformly at random and
computes pk = gsk; (2) a randomized encryption algorithm e Encpk(m), which
picks r2R Zq uniformly at random and computes e = (m · pkr, gr) for a given
plaintext m 2 G; (3) a deterministic decryption algorithm m Decsk(e), which
computes m = a ·b�sk for a given ciphertext e = (a, b) 2 G⇥G. It is easy to verify
that Decsk(Encpk(m)) = m holds for all m 2 G and all key pairs (sk, pk) 2 Zq⇥G.
The ElGamal encryption scheme is provably IND-CPA secure under the decisional
Di�e-Hellman assumption.

In an (extended) Pedersen commitment scheme, the public parameters are a
group G of prime order q and independent generators g, h

1

, . . . , hs 2 G \ {1}. The
scheme consists of two deterministic algorithms, one for computing a commitment
c = grhm1

1

· · ·hms
s 2 G to s messages mi 2 Zq with randomization r2R Zq, and

one for checking the validity of a commitment c when m
1

, . . . ,ms and r are
revealed. We denote respective algorithms by c Commit(m

1

, . . . ,ms, r) and
d Decommit(c,m

1

, . . . ,ms, r) for d 2 {0, 1}. The Pedersen commitment scheme
is perfectly hiding and computationally binding under the DL assumption.

3 In the voting protocol presented in Section 3, which uses this OTk
n-scheme to transfer

return codes obliviously from the authorities to the voter, sender privacy is only
required during vote casting. By revealing all n return codes at the end of the vote
casting process, any attempt by malicious authorities to transfer incorrect return
codes will be detected.

281

Receiver Sender
selects s = (s1, . . . , sk) knows m = (m1, . . . ,mn)

for j = 1, . . . , k
– pick random rj 2R Zq

– compute aj = � (sj) · grj
a=(a1,...,ak)�������������������!

pick random s2R Zq

for j = 1, . . . , k
– compute bj = as

j

for i = 1, . . . , n
– compute ki = H`(� (i)s)
– compute ci = mi � ki
compute d = gs

b=(b1,...,bk)
c=(c1,...,cn)

d �������������������
for j = 1, . . . , k
– compute kj = H`(bj · d�rj)
– compute msj = csj � kj

Fig. 1: Two-round OTk
n-scheme for malicious receiver, where G is a group of prime order

q, g 2 G \ {1} a generator of G, � : {1, . . . , n}! G an encoding of the selections into G,
and H` : {0, 1}⇤ ! {0, 1}` a collision-resistant hash function with output length `.

2.3 Non-Interactive Zero-Knowledge Proofs

Non-interactive zero-knowledge proofs of knowledge are important building
blocks in cryptographic protocol design. In a non-interactive preimage proof
NIZKP[(x) : y = �(x)] for a one-way group homomorphism � : X ! Y , the
prover proves knowledge of a secret preimage x = ��1(y) 2 X for a public value
y 2 Y [Mau09]. The most common construction of a non-interactive preimage
proof results from combining the ⌃-protocol with the Fiat-Shamir heuristic.
Proofs constructed in this way are perfect zero-knowledge in the random oracle
model. In practice, the random oracle is implemented with a collision-resistant
hash function H.

Generating a preimage proof (t, c, s) GenNIZKP�(x, y) consists of picking
a random value w2R X and computing a commitment t = �(w) 2 Y , a challenge
c = H(t, y) 2 [0, c

max

], and a response s = w + c · x 2 X. Verifying a proof
includes checking c = H(t, y) and �(s) = t⇥ yc. Sometimes, the hash function
is called with an additional public input z. We denote the inclusion of such an
additional input by (t, c, s) GenNIZKP�(x, y, z) for commitments c = H(t, y, z).
This technique, which ties z and (t, c, s) together, is a common practice to prevent
copying proofs from one context to another. The verification of a given proof
⇡ = (t, c, s) is denoted by v VerifyNIZKP�(⇡, y, z) for v 2 {0, 1}.

An example of a preimage proof results from the ElGamal encryption scheme.
The goal of (t, c, s) GenNIZKPEncpk((m, r), (a, b), z) is to prove knowledge of

282

the plaintext m and the randomization r for a given ElGamal ciphertext (a, b) and
an additional public input z. Here we understand Encpk(m, r) as a deterministic
algorithm with two arguments rather than a randomized algorithm Encpk(m)
with one argument. Since Encpk is a homomorphism from G ⇥ Zq to G ⇥ G, both
the commitment t = (t

1

, t
2

) and the response s = (s
1

, s
2

) are pairs of values.
Generating the proof requires two and verifying the proof four exponentiations
in G. We will use this proof in the next section.

3 Cryptographic Voting Protocol

The protocol as presented in this section is designed for elections in which
submitting multiple ballots is prohibited. Therefore, we assume that someone’s
right to vote electronically extinguishes with the first submitted ballot. If the vote
casting process fails at some point, we assume that voters have an alternative
vote casting channel such as postal mail or a local polling station. Note that this
scenario corresponds exactly to the particular situation in Switzerland, where
postal mail is the most common voting channel and where vote buying and
coercion is only a minor security concern. To strengthen the compatibility with
the political and legal context in Switzerland, we try to follow the existing
technical recommendations as precisely as possible [BK113a,BK113b,BK113c].

3.1 General Setting

The set of voters and a small number of authorities are the principal parties in-
volved in our protocol. They communicate over di↵erent communication channels.
To set up an election, the protocol requires a secure channel from the authorities
to the voters for the distribution of the verification code sheets. In a real-world
setting, like the one described in [BK113a], this channel is implemented by a
trusted printing o�ce and a trusted postal service, They print the verification
code sheets and deliver them to the voters. Furthermore, a broadcast channel
with memory—in the form of a robust append-only bulletin board—is needed
for collecting the submitted ballots and other election data. We assume that the
authorities have their own designated areas on the bulletin board, which they can
access for example by signing their messages with a private key. Finally, to em-
phasize our focus on cast-as-intended verification, we make a distinction between
voters and the machines they use for vote casting. We call such a machine voting
platform and assume that voters can communicate with their voting platform in
a secure way (but obviously with limited bandwidth).

Candidate List. We consider elections in which voters can vote for exactly
k di↵erent candidates from a set C = {c

1

, . . . , cn} of n � 2 candidates, i.e., no
candidate can be selected more than once. Note that this setting is less restrictive
than it appears, because C may contain up to k “blank candidates” to allow votes
for less than k real candidates. Similarly, C may contain multiple values for each
real candidate to allow more than one vote per candidate. We will always refer

283

to the elements of C as candidates, but they could as well be parties or any other
type of election options. In the simplest case of a yes/no-referendum, we have
either C = {yes, no} or C = {yes, no, blank}, depending on whether blank votes
are allowed or not. We assume that C is defined and published by the election
administration prior to an election, so that it is known to everyone.

Verification Code Sheets. If the electorate consists of N eligible voters, we
suppose that exactly N verification code sheets are printed, one for each eligible
voter. Without loss of generality, we identify both voters and verification code
sheets by corresponding indices i 2 {1, . . . , N} and assume that code sheet i is
sent to voter i prior to an election. Code sheet i contains the list C of candidates
along with corresponding return codes Rij 2 {0, 1}r for each candidate cj 2 C.
It also contains a unique code sheet identifier ID i, a voting code Vi 2 {0, 1}v,
a confirmation code Ci 2 {0, 1}c, and a finalization code Fi 2 {0, 1}f . The
information printed on code sheet i is therefore a tuple

(ID i, Vi, Ci, Fi, {(cj , Rij)}nj=1

).

For improved usability, we assume that return codes are printed using r0 =
d r
log |A|e characters from an alphabet A, for example A = {0, . . . , 9, A, . . . , Z}.

The same holds for the voting, confirmation, and finalization codes. To detect
mistyped voting or confirmation codes, we propose the inclusion of checksums.

Voter Authentication. In the remaining of this paper, we assume that some-
one’s right to vote is identical to possessing a valid verification code sheet. With
this assumption, we do not disregard the necessity of using additional voter
authentication mechanisms based on passwords, biometrics, digital certificates,
or physical presence in person, but we do not explicitly include this aspect in
our discussion. In other words, we assume that the voter authentication problem
is solved, but that eligible voters still require a valid verification code sheet
for casting a vote. This implies that the codes printed on a given code sheet
must remain secret, especially the voting code Vi and the confirmation code Ci,
which the voter enters during vote casting to prove possession of a valid code
sheet. These codes should therefore be protected by physical means such as a
scratchcard or invisible ink. Note that we do not specify whether code sheets are
personal or impersonal, i.e., whether they are tied to a particular voter or not.
This aspect is not relevant in this paper.

3.2 Adversary Model and Trust Assumptions

We assume that the general adversarial goal is to break the integrity or secrecy
of the votes, but not to influence the election outcome via bribery or coercion.
We consider covert adversaries, which may arbitrarily interfere with the voting
process or deviate from the protocol specification to reach their goals, but only
if such attempts are likely to remain undetected [AL10]. Voters and authorities

284

are potential covert adversaries, as well as any external party. This includes
adversaries trying to spread dedicated malware to gain control over the voting
platforms. For preparing and conducting an election, we assume that a threshold
number of non-colluding authorities is available.

All parties are polynomially bounded and thus incapable of solving supposedly
hard problems such as the DDH problem or breaking cryptographic primitives
such as contemporary hash functions. This implies that adversaries cannot
e�ciently decrypt ElGamal ciphertexts or generate valid non-interactive zero-
knowledge proofs without knowing the secret inputs.

3.3 Detailed Protocol Description

The subsequent description of the cryptographic voting protocol is focused on our
new mechanism for cast-as-intended verification, which a↵ects mainly the election
preparation and the vote casting phase of the protocol, but not the tallying
phase. We are therefore not discussing all the necessary details of the operations
executed by the authorities to determine the election result from the list of
submitted ballots. This part of an electronic election system is well-documented
in the literature. However, we stress that defining an appropriate cryptographic
protocol for the tallying phase is crucial for protecting the system against corrupt
authorities.

To further simplify the presentation of the protocol, we will look at the group
of authorities as a single party called authorities. Let (sk, pk) KeyGen() be
their ElGamal key pair, which in reality will be generated in a distributed manner
and such that sk is threshold shared among the authorities, for example using
the protocol of [Ped91]. We assume that pk is publicly known. In Section 3.4, the
case of multiple authorities will be discussed in further detail.

Another simplification is to fix the group Gq ✓ Z⇤
p of quadratic residues

modulo a safe prime p = 2q + 1 as the common group for all the cryptographic
operations used in this paper. We assume that p (which determines Gq) and
independent generators g, h

1

, h
2

, h
3

, h
4

2 Gq \ {1} are publicly known. Other
public parameters are a second prime number p0  q, the bit lengths v, c,
f , r of the voting, confirmation, finalization, and return codes, respectively,
collision-resistant hash functions Hr : {0, 1}⇤ ! {0, 1}r, Hf : {0, 1}⇤ ! {0, 1}f ,
and H` : {0, 1}⇤ ! {0, 1}` for ` = 2 · dlog p0e, and the list C = {c

1

, . . . , cn} of
candidates.

Election Preparation. As shown by the diagram depicted in Figure 2, the
election preparation consists of two tasks executed by the authorities. They first
generate the N verification code sheets and transmit them to the voters. In the
second step, they publish commitments to the values contained in the code sheets
on the public bulletin board. Under the assumption that possessing a verification
code sheet implies eligibility, this list of commitments can be seen as the electoral
roll.

To generate verification code sheet i, the authorities pick a random polynomial
pi(x) =

Pk�1

j=0

aijxj of degree k � 1 (i.e., ai,k�1

6= 0) from the set Zp0 [x] of all

285

Authorities Voter i Bulletin Board

ID i, Vi, Ci, Fi, {(cj , Rij)}nj=1

{(ID i,CVi ,CCi)}Ni=1

Fig. 2: Sequence diagram of the election preparation phase.

such polynomials over the field Zp0 of integers modulo p0. Then they pick n
distinct random integers xij 2R Zp0 , 1  j  n, and compute corresponding
points Pij = (xij , pi(xij)) on the polynomial. The hash values Rij = Hr(Pij) of
these points are the return codes for the candidates. The reason for selecting
the return codes in this way is to allow the reconstruction of the polynomial
when at least k of these points are known. We will use this property to prove the
validity of an encrypted vote. Finally, the authorities define an identifier ID i (e.g.,
ID i = i), pick random values Vi 2R {0, 1}v and Ci 2R {0, 1}c, and compute Fi =
Hf (Ri,1k · · · kRi,n) 2 {0, 1}f . The resulting tuple (ID i, Vi, Ci, Fi, {(cj , Rij)}nj=1

)
is sent to voter i over a secure channel.

After generating verification code sheet i, the authorities select the value
Pi = pi(0) = ai,0 2 Zp0 . Note that the points Pij can be seen as the n shares
obtained from applying Shamir’s (k, n)-threshold secret sharing scheme to a secret
Pi. Commitments CVi Commit(Vi,↵i) and CCi Commit(Ci, Pi, Fi,�i) are
posted to the public bulletin board for randomizations ↵i,�i 2R Zq, respectively.
The purpose of publishing the set {(ID i,CVi ,CCi)}Ni=1

is to enable the verifi-
cation that each ballot has been submitted by someone in possession of a valid
verification code sheet. This set can therefore be regarded as the electoral roll in
a context where possessing a verification code sheet implies eligibility.

Vote Casting. The vote casting and confirmation phase is the core of the
protocol. An overview of the exchanged messages is given in Figure 3. To initiate
the process, the voter enters the code sheet identifier ID i, the voting code Vi,
and the selected candidates s = (s

1

, . . . , sk) into the voting platform. The voting
platform then computes a ballot containing an OTk

n query for the k points
Pi,s1 , . . . , Pi,sk (from which the return codes Ri,s1 , . . . , Ri,sk of the k chosen
candidates and the value Pi can be derived). For this, the voting platform picks
random values r2R Zk

q and computes a Query(s, r). There are some important
technical details in this step:

– Since we use the OTk
n protocol to transfer points Pij 2 Zp0⇥Zp0 , we instantiate

the protocol with a message length ` = 2 · dlog p0e. This allows us to encode
each of the two coordinates of Pij by

`
2

bits and to concatenate them together.

286

– The OTk
n protocol as presented in Section 2.1 requires a generator g of Gq.

Since Gq is of prime order, any value in Gq \ {1} is admissible. To establish
a natural link to the encrypted vote, we require the authorities’ public key
pk 2 Gq to be used as generator for the oblivious transfer.

– For the encoding � : {1, . . . , n}! Gq used in the OTk
n protocol, we use the

set Pn = {p
1

, . . . , pn} of the n smallest prime numbers pi 2 Gq, pi < pi+1

,
and define � (i) = pi. The purpose of this particular choice is to encode s as a

product � (s) =
Qk

j=1

psj , which can then be encrypted using ElGamal. Note
that inverting � (s) by factorization is unique if the product of the largest k
primes in Pn is smaller than q and e�cient when n is small [Gjø11].

Since the query a = (a
1

, . . . , ak) generated in this way contains values aj =
� (sj) · pkrj , we can compute a single value

a =
kY

j=1

aj =
kY

j=1

� (sj) · pkrj = � (s) · pkr,

where r =
Pk

j=1

rj . Therefore, by computing a second value b = gr, we obtain
an ElGamal encryption (a, b) = Encpk(� (s), r) of the encoded voter’s selections
� (s). This simple connection between the OTk

n query and the encrypted vote is
crucial for making the protocol e�cient.

The remaining component for forming the ballot is a non-interactive zero-
knowledge proof ⇡ GenNIZKPEncpk((� (s), r), (a, b), Vi) for proving knowledge
of � (s) and r. Note that we use Vi as an additional input to the proof generation
to disallow copying of encrypted votes. The resulting ballot B = (ID i, Vi,a, b,⇡) is
posted to the bulletin board, from where it can be retrieved by the authorities. If
Vi is the correct voting code for code sheet ID i and if ⇡ is a valid proof, they pick a
random s2R Zq, compute the response (b, c, d) Response(a, (Pi,1, . . . , Pi,n), s),
and return (b, c, d) to the voting platform (only if no valid ballot for ID i has been
posted earlier). Since no private channel is needed for this, we propose to send it
via the bulletin board. We include ID i and ↵i in this message, which means that
the commitment CVi is opened. The full message is a tuple (ID i,b, c, d,↵i).

Vote Confirmation. Upon receiving the response from the authorities, the
voting platform computes the result (Pi,s1 , . . . , Pi,sk) Open(b, c, d, r) of the
oblivious transfer. Corresponding return codes Ri,sj = Hr(Pi,sj) are displayed to
the voter for inspection. If they match with the codes printed on the verification
code sheet, the vote must have been cast and recorded as intended with high
probability, which the voter confirms by entering the confirmation code Ci into
the voting platform. This code is forwarded to the bulletin board together with
Pi = pi(0), which can be computed by interpolating the polynomial pi(x) from
the received points (Pi,s1 , . . . , Pi,sk) using Lagrange’s method.

If both Ci and Pi are correct, the authorities respond by sending the finaliza-
tion code Fi to the voter for inspection. If Fi as displayed by the voting platform
matches with the finalization code on the code sheet, the vote confirmation must

287

Voter i Voting Platform Bulletin Board Authorities

ID i, Vi, s

ID i, Vi,a, b,⇡

ID i, Vi,a, b,⇡

ID i,b, c, d,↵i

b, c, d

Ri,s1 , . . . , Ri,sk

Ci

ID i, Ci, Pi

ID i, Ci, Pi

ID i, Fi,�i, s

Fi

Fi

Fig. 3: Sequence diagram of the vote casting and confirmation phase.

have been successful with high probability. Again, since keeping Fi private is no
longer necessary at this point, we propose to send it via the bulletin board to
the voter. By including the randomizations �i, commitment CCi of code sheet i
is opened and can be publicly verified. Similarly, by including the randomization
s, the commitment d of the OTk

n response (b, c, d) is opened and all n points Pij

are revealed, together with corresponding return codes Rij = Hr(Pij) of code
sheet i. Public verifiers can then check if Fi = Hf (Ri,1k · · · kRi,n) holds, which
implies that the authorities have responded properly to the OTk

n query. Public
verifiers can also interpolate the polynomial pi(x) over the points {Pij}nj=1

, check
if its degree is k� 1, and verify that pi(0) = Pi. This guarantees that the random
points Pij and the value Pi have been generated properly during the election
preparation.4

4 Without such checks, malicious authorities could actively attack the vote secrecy of
some voters by responding to the OTk

n query with some incorrect return codes. If
the voter then confirms the ballot as cast, the authorities learn that no candidate
corresponding to an incorrect return code has been selected. A similar attack could
be launched during the election preparation. If some of the random points Pij are
not selected from the polynomial, then responding with the correct value Pi tells
the authorities that no candidate corresponding to such an incorrect point has been
selected. In the covert adversary model, publishing s prevents both variants of this
attack (see paragraph on vote secrecy in Section 4.1).

288

Tallying. After the election period, the bulletin board contains one or mul-
tiple entries for every ID i. There are several types of entries, depending on
whether someone has participated in the election and on whether vote casting
and confirmation has been successful:

– (ID i,CVi ,CCi): The voter has not participated in the election.

– (ID i,CVi ,CCi , Vi,a, b,⇡): The voter has initiated the vote casting process,
but the process stopped after submitting the ballot. Possible causes are an
incorrect voting code Vi, an invalid zero-knowledge proof ⇡, or the existence
of an earlier valid ballot for ID i.

– (ID i,CVi ,CCi , Vi,a, b,⇡,b, c, d,↵i): The authorities have responded to the
OTk

n query, but either the voter has not entered the confirmation code or the
voting platform has not forwarded it to the bulletin board.

– (ID i,CVi ,CCi , Vi,a, b,⇡,b, c, d,↵i, Ci, Pi): The voting platform has sent val-
ues Ci and Pi to the bulletin board, but then the process has stopped. Possible
causes are incorrect values Ci or Pi.

– (ID i,CVi ,CCi , Vi,a, b,⇡,b, c, d,↵i, Ci, Pi, Fi,�i, s): This is the success case,
in which the authorities have responded to correct values Ci and Pi with the
finalization code Fi and randomization s.

It is evident that only ballots from the success case can be considered in the tally.
A list of corresponding ElGamal encryptions (a, b) = (

Qk
j=1

aj , b) is extracted for
further processing. As mentioned earlier, we do not further discuss the tallying
part of the protocol, because this is well-studied in the literature of electronic
voting protocols. We simply assume that this process reveals—in a publicly
verifiable manner—a list of plaintext votes � (s), which can be decoded into the
voter’s selections s = (s

1

, . . . , sk). Accumulating these selections over all valid
votes generates the final election result.

Verification. At the end of an election, a number of verifications can be per-
formed by the public. In Table 1, we list all computations and checks that can
be performed for every submitted ballot in the success case. In our setting, in
which possessing a verification code sheet implies eligibility, these checks prove
that every valid vote has been submitted by an eligible voter and that every
eligible voter has voted at most once. To achieve a complete chain of universal
verifiability, we assume that the authorities publish cryptographic proofs for the
correctness of the election result (corresponding checks are not listed in Table 1).

By performing the computations of Table 1 on their own ballot, participating
voters can verify the ballot consistency and the inclusion of their vote in the
tally. By checking the validity of the involved commitments, they can verify the
consistency of their verification code sheet. It is also possible to check that the
return codes have been generated properly and that the authorities responded
faithfully to the OT query. Abstaining voters can check that their verification
code sheet has not been used by an attacker.

289

Computations Range Checks

d1 Decommit(CVi , Vi,↵i) d1 = 1

d2 Decommit(CCi , Ci, Pi, Fi,�i) d2 = 1

a0 =
Qk

j=1 aj

v VerifyNIZKPEncpk
(⇡, (a0, b), Vi) v = 1

d0 = pks d0 = d

b0j = as
j j = 1, . . . , k b0j = bj

P 0
ij = Hr(cj �H`(� (j)s) = (x0

ij , y
0
ij) j = 1, . . . , n

R0
ij = Hr(P

0
ij) j = 1, . . . , n

F 0
i = Hf (R

0
i,1k · · · kR0

i,n) F 0
i = Fi

interpolate p0i(x) =
Pn�1

j=0 a0
ijx

j over {P 0
ij}nj=1 j = k, . . . , n� 1 a0

ij = 0

a0
i,k�1 6= 0

a0
i,0 = Pi

Table 1: List of computations and checks to verify the validity of a ballot in the success
case, which corresponds to an entry (ID i,CVi ,CCi , Vi,a, b,⇡,b, c, d,↵i, Ci, Pi, Fi,�i, s)
on the bulletin board.

3.4 Multiple Authorities

The protocol as presented above generalizes naturally to t � 1 authorities such
that no single authority knows the codes of code sheet i. Each authority generates
its own verification code sheet exactly as described in Section 3.3 and transmits it
to voter i over the secure channel. During vote casting, voters send a single OTk

n

query to all authorities, which can respond individually and simultaneously. The
actual return codes are Rij = �t

k=1

Hr(Pijk), where Pijk denotes the j-th point
on the random polynomial picked by authority k for code sheet i. In a similar
way, multiple finalization codes Fik can be merged into a single finalization code
Fi = �t

k=1

Fik. Finally, voting and confirmation codes are concatenated into
Vi = Vi,1k · · · kVi,t and Ci = Ci,1k · · · kCi,t, respectively.5

4 Discussion

In this section, we will briefly discuss the security properties and the performance
of the proposed cryptographic voting protocol and compare it to the existing
work in the literature.

5 Concatenation of voting and confirmation codes is the simplest possible solution
to generalize the protocol to multiple authorities. As a consequence, the lengths of
Fi and Ci are multiplied by t, which may cause problems from a usability point of
view. A discussion of such usability problems and proposals for more sophisticated
solutions are beyond the scope of this paper.

290

4.1 Security

The principal goal of the proposed cast-as-intended verification mechanism is to
enable the detection of an attack by malware on the voting platform without
compromising vote secrecy on the server side. If an attack—or a defective system—
is detected by some voters, it is assumed that they have access to an alternative
voting channel such as postal mail.

Correctness. Submitting a ballot that makes it into the final tally requires
knowledge of the codes Vi, Ci, and Pi of a valid verification code sheet i 2
{1, . . . , N}. Any attempt to submit a ballot with incorrect codes will be detected
and prohibited by the authorities. Guessing correct codes or an exhaustive search
for correct codes can be prevented with high probability by choosing large enough
length parameters v and c and a large enough prime p0. Any attempt to submit
multiple ballots with the same codes Vi, Ci, and Pi will also be detected and
prohibited by the authorities. The authorities themselves can only compute
correct codes and use them to submit a ballot if they all collude. A single honest
authority is therefore su�cient to prevent ballot stu�ng.

If a malicious voting platform tries to submit votes for candidates di↵erent
from the voter’s intention, then the return codes will not match and the voters will
abort the voting process. Submitting less than k of the voter’s actual selections
will be detected as well, because pi(x) can not be interpolated and Pi can not
be computed in this case. Submitting a vote for more than k candidates will be
detected and prohibited by the authorities. Submitting an invalid value b along
with the OTk

n query a is prevented by the non-interactive zero-knowledge proof
⇡, i.e., such attempts will be detected by the authorities. Waiting for the voter to
enter the confirmation code and then changing the submitted ballot is prevented
by the append-only property of the bulletin board. Not submitting the ballot or
the values Ci and Pi can not be prevented, but this will be detected by the voter
with high probability when a wrong response or no response at all is displayed.

Vote Secrecy. Guaranteeing vote secrecy on a malware-infected voting platform
is impossible in a system in which voters enter their selections in plaintext. As
a consequence, our protocol does not solve this problem. On the server side,
provided that a proper privacy-preserving tallying procedure is in place, vote
secrecy is guaranteed under the assumptions that the DDH problem is hard
(which implies IND-CPA security for ElGamal encryptions) and that a threshold
number of authorities holding a share of the private key sk is honest. If this is
the case, no information about the voter’s selections s is leaked by publishing
the ballot B = (ID i, Vi,a, b,⇡) on the bulletin board.

Submitting the values Ci and Pi to confirm matching return codes does
not reveal anything about the voter’s selections to the public, but malicious
authorities could break vote secrecy by responding with some incorrect return
codes to the OTk

n query or by sending some incorrect return codes over the
secure channel during election preparation. In both cases, confirming the vote

291

reveals to the authorities that no candidate corresponding to an incorrect return
code has been selected. In the covert adversary model, our protocol prevents an
attack of the first type by requesting the authorities to reveal the randomization
s of the OTk

n response. This permits public verifiers to compute the return
codes of all candidates of a given code sheet and to check if these codes match
with the finalization code. Any attempt to respond with incorrect return codes
would be detected in this way. To detect attacks of the second type and thus
to prevent covert adversaries from conducting them, voters could be asked to
check if all return codes match with the code sheet and to report to the election
administration if this is not the case. Clearly, this is not very practical from
usability point of view, especially if n is large, but our protocol does not o↵er a
better solution for this problem.

4.2 Comparison to Existing Work

In Table 2, we present a performance comparison between our approach and the
two most relevant approaches from the literature. Since the approach presented
in [HLv10] turned out to be much less e�cient, we do not further discuss its
properties and exclude it from the subsequent comparison.

This Paper [GGP15] [HLv10]

Election Preparation Authorities 6N (n+ 2)N nN

Vote Casting

Voting platform 2k + 3 k + 10 k(7 log n+ 8)

(k + 3) (7) (k(6 log n+ 8))

Authorities n+ k + 5 11 k(5n+ 6 log n+ 8)

(n+ 1) (0) (k(2n+ 2 log n))

Table 2: Performance comparison between the protocol of this paper and existing work
in terms of exponentiations in the underlying group. The values given in parentheses
indicate the number of exponentiations that can be pre-computed. In the case of [HLv10],
which is restricted to 1-out-of-n votes, we assume that k votes are submitted in parallel.

Compared to the Neuchâtel protocol [GGP15], our approach o↵ers a number
of conceptual advantages. First, while the Neuchâtel protocol requires three
di↵erent types of server-side parties (registrars, code generator, voting server),
which are pairwise assumed not to collude, we only require a threshold number
of non-colluding authorities performing identical operations. This implies that
our protocol o↵ers better flexibility in terms of robustness. Second, while the
Neuchâtel protocol requires a private channel to transmit the return codes from
the code generator to the voters (otherwise vote secrecy could be violated by the
registrars), we can send the OTk

n response over a public channel. Third, there are
two types of private keys in the Neuchâtel protocol, which are used by multiple

292

parties. This creates unnecessary and uncommon trust assumptions, which we
do not have in our protocol. Finally, while nN so-called reference values need to
be generated and stored in the Neuchâtel protocol for proving vote correctness,
we achieve the same in a more elegant way using only N values P

1

, . . . , PN .
In the light of the numbers shown in Table 2, the overall performance of the two

protocols is similar. While the election preparation is considerably more e�cient
in our protocol when n is large, our approach requires more expensive online
computations during vote casting. However, if we assume that the voting platform
performs pre-computations in the background while the voter is interacting with
the voting platform, our approach is slightly more e�cient: k versus k + 3
online exponentiations. If we assume that pre-computations are also performed
on the server side, our approach is more e�cient for k < 7 and less e�cient
for k > 7. Note that server-side pre-computations can be performed well in
advance, for example as part of the election preparation. In that case, the overall
performance of the election preparation is very similar: (n+ 1)N 0 + 6N versus
(n+ 2)N exponentiations, where N 0  N denotes the maximal expected number
of participating voters. Nevertheless, by allowing server-side pre-computations at
any moment before an election, not necessarily as part of the election preparation,
our approach is slightly more flexible.

5 Conclusion

The cryptographic voting protocol presented in this paper introduces a new
mechanism for cast-as-intended verification based on oblivious transfer. We believe
that the problem of transferring return codes as a response to submitting an
encrypted vote is an oblivious transfer problem and therefore should be solved as
such. The approach presented in this paper is the first e�cient solution. Compared
to existing cast-as-intended verification methods, our approach is conceptually
more elegant and requires less trust assumptions and cryptographic keys. We
think that it o↵ers an appropriate solution for countries such as Switzerland,
where providing a solution to the secure platform problem is a prerequisite for
introducing the next-generation systems. We have been invited by the State of
Geneva to participate in implementing this approach for their future system.
Formal security proofs will be developed in a separate project.

Acknowledgments. We thank the anonymous reviewers for their reviews and
appreciate their comments and suggestions. We are also grateful to Stephan
Fischli, Severin Hauser, Thomas Hofer, and Philipp Locher for helpful discussions
and proofreading. This research has been supported by the State of Geneva.

References

AIR01. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell
digital goods. In B. Pfitzmann, editor, EUROCRYPT’01, 20th International

293

Conference on the Theory and Applications of Cryptographic Techniques,
LNCS 2045, pages 119–135, Innsbruck, Austria, 2001.

AL10. Y. Aumann and Y. Lindell. Security against covert adversaries: E�cient
protocols for realistic adversaries. Journal of Cryptology, 23(2):281–343, 2010.

BK113a. Ergänzende Dokumentation zum dritten Bericht des Bundesrates zu Vote
électronique. Die Schweizerische Bundeskanzlei (BK), 2013.

BK113b. Technische und administrative Anforderungen an die elektronischen Stimmab-
gabe. Die Schweizerische Bundeskanzlei (BK), 2013.

BK113c. Verordnung der Bundeskanzlei über die elektronische Stimmabgabe (VEleS).
Die Schweizerische Bundeskanzlei (BK), 2013.

Bol03. A. Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Di�e-Hellman-group signature scheme. In Y. Desmedt,
editor, PKC’03, 6th International Workshop on Theory and Practice in Public
Key Cryptography, LNCS 2567, pages 31–46, Miami, USA, 2003.

CT05. C. K. Chu and W. G. Tzeng. E�cient k-out-of-n oblivious transfer schemes
with adaptive and non-adaptive queries. In S. Vaudenay, editor, PKC’05, 8th
International Workshop on Theory and Practice in Public Key Cryptography,
LNCS 3386, pages 172–183, Les Diablerets, Switzerland, 2005.

CT08. C. K. Chu and W. G. Tzeng. E�cient k-out-of-n oblivious transfer schemes.
Journal of Universal Computer Science, 14(3):397–415, 2008.

GB12. I. S. Gebhardt Stenerud and C. Bull. When reality comes knocking – Norwe-
gian experiences with verifiable electronic voting. In M. J. Kripp, M. Volkamer,
and R. Grimm, editors, EVOTE’12, 5th International Workshop on Electronic
Voting, number P-205 in Lecture Notes in Informatics, pages 21–33, Bregenz,
Austria, 2012.

GGP15. D. Galindo, S. Guasch, and J. Puiggaĺı. 2015 Neuchâtel’s cast-as-intended
verification mechanism. In R. Haenni, R. E. Koenig, and D. Wikström, editors,
VoteID’15, 5th International Conference on E-Voting and Identity, LNCS
9269, pages 3–18, Bern, Switzerland, 2015.

Gjø10. K. Gjøsteen. Analysis of an internet voting protocol. IACR Cryptology ePrint
Archive, 2010/380, 2010.

Gjø11. K. Gjøsteen. The Norwegian Internet voting protocol. In A. Kiayias and
H. Lipmaa, editors, VoteID’11, 3rd International Conference on E-Voting
and Identity, LNCS 7187, pages 1–18, Tallinn, Estonia, 2011.

HLv10. S. Heiberg, H. Lipmaa, and F. van Laenen. On e-vote integrity in the case of
malicious voter computers. In D. Gritzalis, B. Preneel, and M. Theoharidou,
editors, ESORICS’10, 5th European Conference on Research in Computer
Security, LNCS 6345, pages 373–388, Athens, Greece, 2010.

Lip11. H. Lipmaa. Two simple code-verification voting protocols. IACR Cryptology
ePrint Archive, 2011/317, 2011.

Mau09. U. Maurer. Unifying zero-knowledge proofs of knowledge. In B. Preneel,
editor, AFRICACRYPT’09, 2nd International Conference on Cryptology in
Africa, LNCS 5580, pages 272–286, Gammarth, Tunisia, 2009.

Ped91. T. P. Pedersen. A threshold cryptosystem without a trusted party. In
D. W. Davies, editor, EUROCRYPT’91, 10th Workshop on the Theory and
Application of Cryptographic Techniques, LNCS 547, pages 522–526, Brigthon,
U.K., 1991.

PG11. J. Puiggaĺı and S. Guasch. Internet voting system with cast as intended
verification. In A. Kiayias and H. Lipmaa, editors, VoteID’11, 3rd Interna-
tional Conference on E-Voting and Identity, LNCS 7187, pages 36–52, Tallinn,
Estonia, 2011.

294

PG12. J. Puiggaĺı and S. Guasch. Cast-as-intended verification in Norway. In
M. Kripp, M. Volkamer, and R. Grimm, editors, EVOTE’12, 5th International
Workshop on Electronic Voting, number P-205 in Lecture Notes in Informatics,
pages 49–63, Bregenz, Austria, 2012.

SV12. M. Schläpfer and M. Volkamer. The secure platform problem: Taxonomy and
analysis of existing proposals to address this problem. In ICEGOV’12, 6th
International Conference on Theory and Practice of Electronic Governance,
Albany, USA, 2012.

295

