
Coercion-Resistant Internet Voting with
Everlasting Privacy

Philipp Locher1,2, Rolf Haenni1, and Reto E. Koenig1

1 Bern University of Applied Sciences, CH-2501 Biel, Switzerland
{philipp.locher,rolf.haenni,reto.koenig}@bfh.ch

2 University of Fribourg, CH-1700 Fribourg, Switzerland
philipp.locher@unifr.ch

Abstract. The cryptographic voting protocol presented in this paper
offers public verifiability, everlasting privacy, and coercion-resistance si-
multaneously. Voters are authenticated anonymously based on perfectly
hiding commitments and zero-knowledge proofs. Their vote and partic-
ipation secrecy is therefore protected independently of computational
intractability assumptions or trusted authorities. Coercion-resistance is
achieved based on a new mechanism for deniable vote updating. To evade
coercion by submitting a final secret vote update, the voter needs not to
remember the history of all precedent votes. The protocol uses two types
of mix networks to guarantee that vote updating cannot be detected by
the coercer. The input sizes and running times of the mix networks are
quadratic with respect to the number of submitted ballots.

1 Introduction

Publishing the list of submitted ballots is a prerequisite for introducing public
verifiability in electronic voting systems. Since the encrypted votes included in
the ballots are protected by cryptographic techniques available today, there is no
guarantee that the protection will withstand future advances in cryptanalysis
and computational abilities. The secrecy of a vote submitted today is therefore
not guaranteed to last forever. As a consequence, election organizers are often
concerned about handing over the election data to everyone, even if this results
in limiting the scope of public verifiability. Another serious concern for election
organizers is the increased scalability of vote buying, bribery, or coercion attacks
in an entirely digitalized environment. Providing a receipt to allow individual
verifiability and not providing a receipt to disallow vote buying is a strong conflict
in the design of electronic voting protocols.

1.1 Related Work

To the best of our knowledge, everlasting privacy and coercion-resistance have
never been addressed together in a single cryptographic voting protocol. As each
of them is a highly challenging problem on its own, offering them together seems
to be nearly impossible. In the existing literature on everlasting privacy, the

adversary is assumed to possess unlimited computational power and an infinite
amount of time to break the privacy of the votes. Some of the proposed solutions
are designed for the traditional setting, in which ballots are cast in a private
polling booth, whereas other protocols offer everlasting privacy for Internet
elections with the aid of trusted authorities. In each of these proposals, a subset
of colluding authorities could potentially break the privacy of the votes. The first
protocol not relying on trusted authorities has been proposed recently by Locher
and Haenni (LH15) [8]. They use an efficient set membership proof and a proof
of knowledge of the representation of a committed value to achieve everlasting
privacy. Their protocol is a direct predecessor of the protocol presented in this
paper.

In the literature on coercion-resistance, there are two complementary strategies
for a voter to evade coercion. In the protocol of Juels et al. (JCJ05) [7], the voter
under coercion presents a fake credential to the adversary. The system is designed
in a way that ballots submitted with a fake credential are silently eliminated
during tallying using a quadratic number of plaintext equivalence tests (PET).
The adversary model of JCJ05 allows voters to escape from adversarial control
for a short moment during the voting period, which they can use for submitting a
ballot using their true credentials. The second principal strategy against coercion
is to let voters update their votes arbitrarily many times. In some protocols
implementing this strategy, voters need to remember the history of all precedent
votes when submitting the final ballot, which implies that simulation attacks
cannot be prevented. In a more recent protocol by Achenbach et al. (AKLM15) [1],
voters can submit a final ballot without remembering any previous votes and such
that no coercer can learn whether vote updating has taken place or not. To achieve
what they call deniable vote updating, they need trusted authorities performing
jointly a quadratic number of encrypted plaintext equivalence tests (EPET). The
adversary model of AKLM15 allows voters to escape from adversarial control
at the end of the voting period, which is a slightly stronger assumption than
in JCJ05. On the other hand, voters under coercion can follow the adversary’s
instructions without lying or concealing something.

1.2 Contribution

The contribution of this paper is a new cryptographic protocol for remote
electronic voting. For voters not observed by an adversary before or during vote
casting, it provides everlasting privacy without relying on trusted authorities or
computational intractability assumptions. This means that no one will ever be
able to break the secrecy of the vote or the secrecy of the voter’s participation. The
protocol also offers adequate protection against vote buying, bribery, and coercion
attacks by polynomially bounded adversaries. As far as we know, this protocol is
the first to offer everlasting privacy and coercion-resistance simultaneously.

The core of the protocol is composed of a set membership proof, a proof of
known representation of a committed value, and a new tallying process that
guarantees that no adversary can learn if particular votes have been updated
or not. The proposed mechanism is based on two types of mix networks, which

are applied to a quadratic number of input encryptions. The shuffling destroys
any link to the original list of submitted ballots, but at the same time preserves
the information whether a given vote has been updated or not. The quadratic
running time of the tallying procedure leads to a performance comparable to
JCJ05 and AKLM15. Our approach is therefore not an efficient solution for large
elections.

1.3 Paper Overview

We present our new protocol on two different levels of technical abstraction.
In Section 2, we give a high-level overview of the approach by specifying the
underlying adversary and trust model, and by discussing the resulting protocol
properties. In Section 3, we introduce the cryptographic primitives, present the
cryptographic details of the protocol, and provide a more precise discussion of
the security properties. We summarize the findings of this paper in Section 4.

2 Coercion-Resistant Internet Voting with Everlasting
Privacy

The approach presented in this paper is the first cryptographic voting protocol
that offers verifiability, coercion-resistance, and everlasting privacy simultaneously.
Three types of parties are involved in the protocol: an election administration, a
group of trusted authorities, and the voters. They communicate over different
communication channels. During registration, the protocol requires an authentic
channel between voters and the election administration. Furthermore, a broadcast
channel with memory—in the form of a robust append-only public bulletin
board—is needed for collecting the election data. We assume that the election
administration and the trusted authorities have their own designated areas on the
bulletin board. Finally, for sending their votes to the bulletin board, voters need
access to an anonymous channel. We assume that it is impossible to intercept
and record the complete traffic over this channel during an election and storing
the intercepted data for future use [2].

2.1 Adversary Model and Trust Assumptions

The general adversarial goals are to break the integrity or secrecy of the votes
or to influence the election outcome via bribery or coercion. We consider active
adversaries, which may interfere with the voting process at any point to reach
their goals. To achieve coercion-resistance, we assume that a threshold number of
authorities not colluding with the adversary is available for the tallying process.
We also assume that no adversary can control the machines used during the
voting process.3

3 We are aware that requiring a secure platform is a strong and probably unrealistic
assumption. We do not explicitly address this problem in this paper.

To discuss the aspect of everlasting privacy, we consider two types of adver-
saries with very different computational capabilities.

Present adversaries act before, during, or shortly after an election, i.e., within
the cryptoperiod of the involved cryptographic keys. We assume present
adversaries to be polynomially bounded and thus incapable of solving sup-
posedly hard problems such as computing discrete logarithms in some large
groups or breaking cryptographic primitives such as contemporary hash
functions. Therefore, they cannot efficiently open computationally binding
commitments or generate valid proof transcripts for zero-knowledge proofs
without knowing the secret inputs. On the other hand, present adversaries
may have the power and resources to bribe or coerce a large number of voters.
A present adversary in our model is therefore equivalent to the adversary in
JCJ05, except for the additional assumption that voters can escape adversar-
ial control for submitting a final vote update. As discussed in AKLM15, this
is a necessary pre-condition for offering coercion-resistance based on deniable
vote updating.

Future adversaries may become active at any point in the future, i.e., strictly
after the tallying phase of the election under attack. We assume that future
adversaries cannot collude with present adversaries, for example by sharing in-
formation. On the other hand, we assume them to possess unlimited resources
in terms of computational power and time. Clearly, contemporary cryptogra-
phy will be completely useless in the presence of such an adversary, and any
private keying material used in an election today will be revealed. However,
the secrets hidden in perfectly hiding commitments or zero-knowledge proofs
will never be revealed, even if they were generated today.

2.2 Protocol Overview

The protocol is a continuation of LH15. Trusted authorities are needed to guaran-
tee fairness and to add coercion-resistance in form of deniable vote updating, but
not for privacy. The same applies to computational intractability assumptions.
They are only needed to prevent the creation of invalid ballots during vote casting
and to allow voters to deny the submission of an updated vote, but not to protect
privacy in the long run.

Like in LH15, the core of the protocol is a combination of a set membership
proof and a proof of known representation of a committed value [3, 5]. When
casting a vote, the voter provides a zero-knowledge proof of knowledge of the
representation of one of the registered public voter credentials. The same voter
may submit multiple ballots, but the tallying procedure guarantees that only
the last vote counts. In this way, precedent votes can be overridden without
remembering their history. To guarantee that vote updating is deniable, we use
two different types of mix networks to unlink the votes of a given voter from the
voter’s public credential. The main challenge in this step is to detect and exclude
updated votes in a verifiable way without leaking any information to a potential
coercer. The entire voting procedure consists of four consecutive steps (the first
two steps are identical and the third step is very similar to LH15):

Registration. The voter creates a pair of private and public credentials and
sends the public credential over an authentic channel to the election adminis-
tration.

Election Preparation. The election administration publishes the list of public
voter credentials—one for every registered voter—on the public bulletin
board.

Vote Casting. The voter creates an electronic ballot and sends it over an
anonymous channel to the public bulletin board. The ballot consists of the
encrypted vote, a commitment to the public credential, a homomorphic
encryption of an election credential, and the above-mentioned composition
of zero-knowledge proofs. The voter’s public credential and the election
credential are derived from the same private credential.

Tallying. The trusted authorities verify the proofs included in the submitted
ballots and eliminate ballots with invalid proofs. For each remaining ballot,
the authorities compute a list of ciphertexts with the following property:
whenever the ballot has been updated, at least one of its plaintexts is equal
to 1. The construction of this list is similar to AKLM15, but to sort out
updated ballots, we first shuffle the list in a verifiable mix network. The
shuffle applies under encryption a one-way function to all plaintexts different
from 1. In this way, the shuffled list is unlinked from the original list, but
the above property that an encryption of 1 is an indicator for an updated
ballot is preserved. By attaching the encrypted vote to the resulting shuffled
list, we obtain an intermediate ballot containing all necessary information to
conclude the tallying process. The list of all intermediate ballots is shuffled
in a verifiable re-encryption mix network to unlink them from the original
ballots on the bulletin board. For each output ballot of this shuffle, the
trusted authorities need to decide about including the ballot in the final tally.
For this, they start decrypting the ciphertexts until a plaintext equal to 1
is revealed. If this happens, the ballot is sorted out. The encrypted votes
included in the remaining ballots are decrypted and counted. To enable public
verification, all steps performed by a trusted authority must be accompanied
by non-interactive zero-knowledge proofs.

This protocol provides everlasting privacy for the same reasons as its predecessor
protocol LH15. All the identifying information contained in a ballot is either a
perfectly hiding commitment or a zero-knowledge proof. To provide coercion-
resistance, a relatively complex tallying phase is necessary to sort out updated
votes in a verifiable way, but such that no coercer can learn if a ballot has been
updated or not. Further aspects of coercion-resistance are discussed in the next
subsection. Note that the tallying procedure requires two mix networks, which
are both applied to a quadratic number of input encryptions. The performance
of the tallying procedure is therefore comparable to AKLM15.

2.3 Discussion of Coercion-Resistance

To protect an electronic voting system from adversaries trying to bribe or coerce
voters, receipt-freeness is a necessary precondition. Intuitively, a receipt consists

of some auxiliary non-public information, which is sufficient for voters to prove
towards a passive adversary how they voted. According to JCJ05, there are
at least three additional coercive attacks, which receipt-freeness alone can not
prevent. Voters could be forced to cast a random vote (randomization attack),
to abstain from voting (forced-abstention attack), or to hand the private keying
material over to the coercer (simulation attack).

Deniable vote updating as implemented in our protocol is an adequate counter-
measure to coercion in general. Whatever a present adversary forces the voter
into, the voter can extinguish the demands of the adversary by submitting secretly
a final vote. Other than JCJ05, deniable vote updating is convincing by the
fact that a voter can act exactly as demanded by the coercer without lying or
pretending. In addition, as casting the last vote is independent of the history
of votes submitted previously, the voter must not memorize any state. In other
words, submitting a final vote will always erase any previous votes, even if they
had been cast by the adversary. Erasing votes in this way remains undetected by
the adversary, because the election credential added to the ballot is encrypted
and obfuscated during the tallying phase. As a result, a present adversary will
never succeed with a randomization, forced-abstention, or simulation attack.

A general problem of coercion-resistant systems such as JCJ, which are based
the voter’s ability to lie about some secret credential in the presence of the coercer,
is the unintended use of a wrong credential. The resulting ballot will appear on
the bulletin board and the voter can check its inclusion, but the vote will not
be taken into account in the final tally. Since the system cannot respond with a
warning in such a case, voters are unable to detect using a wrong credential. In a
protocol based on deniable vote updating, the system can issue such a warning
when votes are cast with a wrong credential. This is a remarkable difference when
considering individual verifiability.

The everlasting privacy property of our protocol even prevents an additional
coercive attack not discussed in JCJ05. A future adversary may try to coerce a
voter by claiming to know how the voter has voted in the past and by threatening
the voter with making it public (”I know how you voted and I am going to tell
everyone, unless...”). In a protocol that offers everlasting privacy, this claim
cannot be justified whatsoever.

3 Detailed Cryptographic Protocol

In this section, we present the cryptographic details of our new coercion-resistant
protocol for electronic elections with everlasting privacy. We start with a short
discussion of cryptographic preliminaries. Then we provide a detailed formal
description of the protocol and analyse its security properties.

3.1 Cryptographic Preliminaries

Let Gp be a multiplicative cyclic group of prime order p, for which the DL
assumption is believed to hold. Furthermore, let Gq ⊂ Z∗p, be a large prime-order

subgroup of the group of integers modulo p. Finally, suppose that independent
generators g0, g1 ∈ Gp and h, h0, h1, ... ∈ Gq are publicly known. Independence
with respect to generators of a cyclic group means that their relative discrete
logarithms are not known to anyone.

Homomorphic Commitments and Encryptions. In our protocol, we use
two instances of the perfectly hiding Pedersen commitment scheme, one over
Gp and one over Gq. We distinguish them by comp(u, r) = gr0g

u
1 for a com-

mitment to u ∈ Zp with randomization r ∈ Zp and comq(v, s) = hs0h
v
1 for a

commitment to v ∈ Zq with randomization s ∈ Zq. In the case of Gq, we write
comq(v1, ... , vn, s) = hs0h

v1
1 · · ·hvnn for a commitment to n values v1, ... , vn ∈ Zq.

The protocol also requires an instance of an ElGamal encryption scheme over
Gq, where x ∈ Zq is a shared private key and y = hx ∈ Gq a public key. We
write E = ency(m, r) = (hr,myr) ∈ Gq ×Gq for encrypting a message m ∈ Gq
with randomization r ∈ Zq and m = decx(E) = ba−x for decrypting a ciphertext
E = (a, b) in a distributed way using the private key shares of x. We write
M = decx(E) = (m1, ... ,mn) for decrypting a list of ciphertexts E = (E1, ... , En).
To re-encrypt a ciphertext E with a new randomization r′ ∈ Zq, we use the
standard procedure E′ = reEncy(E, r

′) = E · ency(1, r
′) of multiplying E with

an encryption of 1. We write E′ = reEncy(E, r
′) = (E′1, ... , E

′
n) to re-encrypt a

list of ciphertexts E = (E1, ... , En) with new randomizations r′ = (r′1, ... , r
′
n).

Zero-Knowledge Proofs. Our protocol relies strongly on various non-inter-
active zero-knowledge proofs of knowledge. A fundamental proof is the preimage
proof NIZKP [(a) : b = φ(a)] for a one-way group homomorphism φ : X → Y ,
where a = φ−1(b) ∈ X is the secret preimage of a public value b ∈ Y . Examples of
such preimage proofs result from the above homomorphic commitment and encryp-
tion schemes, for example NIZKP [(u, r) : C = comp(u, r)] for proving knowledge
of the opening of a Pedersen commitment, NIZKP [(m, r) : E = ency(m, r)] for
proving knowledge of the plaintext and randomization of an ElGamal ciphertext,
or NIZKP [(x) : M = decx(E) ∧ y = hx] for proving knowledge of the private key
used in the decryption of a list of ciphertexts.

The most common construction of a non-interactive preimage proof is the
Σ-protocol in combination with the Fiat-Shamir heuristic. Proofs constructed in
this way are perfect zero-knowledge in the random oracle model. Their transcript
consists of one or multiple commitments and one or multiple responses to a
challenge obtained from querying the random oracle with the public inputs and the
commitments. In practice, the random oracle is implemented with a cryptographic
hash function. In the protocol description, we will write π = NIZKP [·] for the
transcripts of non-interactive proofs.

Set Membership Proof. Let U = {u1 ... , uN} be a finite set of values ui ∈ Zp and
C = comp(u, r) a commitment to an element u ∈ U . Both U and C are publicly
known. With a set membership proof, denoted by

NIZKP [(u, r) : C = comp(u, r) ∧ u ∈ U],

the prover demonstrates knowledge of corresponding values u ∈ U and r ∈ Zp.
A general way of constructing a set membership proof is to demonstrate that
P (u) = 0 for the polynomial P (X) =

∏N
i=1(X − ui). This proof, denoted by

NIZKP [(u, r) : C = comp(u, r) ∧ P (u) = 0],

is a particular case of a polynomial evaluation proof. In a recent publication,
Bayer and Groth proposed a polynomial evaluation proof with a logarithmic size,
which is the current state-of-the-art [5].

Proof of Known Representation. In a cyclic group such as Gq with generators
h1, ... , hn, a tuple (v1, ... , vn) ∈ Znq is called DL-representation (or simply rep-
resentation) of u ∈ Gq, if u = hv11 · · ·hvnn [6]. For such a value u ∈ Gq ⊂ Zp, let
C = comp(u, r) and D = comq(v1, ... , vn, s) be publicly known commitments.
Following Au et al. [3], a proof of known representation of a committed value (or
simply representation proof), denoted by

NIZKP [(u, r, v1, ... , vn, s) : C = comp(u, r) ∧
D = comq(v1, ... , vn, s) ∧ u = hv11 · · ·hvnn],

demonstrates that the tuple of committed values in D is a DL-representation of
the committed value in C.

Cryptographic Shuffle. The input of a cryptographic shuffle is a list Z =
(z1, ... , zn) of input values zi ∈ Z. The mixer applies a keyed one-way function
f : Z ×K → Z to each input value zi and permutes the results by picking a
random permutation φ : [1, n]→ [1, n] from the set Φn of permutations of length
n. The output of a cryptographic shuffle is therefore a list Z′ = (z′1, ... , z

′
n) of

values z′j = f(zi, ki) for indices j = φ(i) and keys ki ∈ K. Additionally, the mixer
proves the correctness of the shuffle using one of the existing techniques [4, 9].
We denote the two steps of this procedure by

(Z′, πZ) = shuffleφf (Z, k1, ... , kn),

where πZ is the transcript of the non-interactive zero-knowledge proof. To prevent
that a single mixer must be fully trusted, the shuffling needs to be performed by
multiple independent mixers in a mix network. The unlinkability between input
and output is guaranteed as long as at least one permutation remains secret.

In our protocol, we need two instances of a cryptographic shuffle. In the first
case, the input is a list E = (E1, ... , En) of ElGamal ciphertexts Ei ∈ Gq ×Gq.
For random values γi ∈R Zq \ {0}, the function exp(Ei, γi) = Eγii is applied to

each input ciphertext Ei, which gives us (E′, πE) = shuffleφexp(E, γ1, ... , γn).4 In
this particular shuffle, both the ciphertexts and the plaintexts are unlinked from

4 Note that γi 6= 0 is a crucial pre-condition to avoid trivial output ciphertexts (1, 1).
The verifier of πE must therefore check Ei 6= (1, 1) for every Ei ∈ E and reject the
proof if one of the checks fails.

their original values in E. There is only one exception: an encryption of 1 remains
an encryption of 1.

In the second case, the input list EE = (E1, ... ,En) contains n individual
lists Ei = {Ei,1, ... , Ei,n} of ElGamal ciphertexts, i.e., EE contains a total of
n2 ciphertexts Ei,j ∈ Gq × Gq. For random values r′i = (r′i,1, ... , r

′
i,n) ∈R Znq ,

the function reEncy(Ei, r
′
i) is applied to each input list Ei. In other words,

(EE′, πEE) = shuffleφreEncy
(EE, r′1, ... , r

′
n) re-encrypts all n2 ciphertexts, but only

the rows of the input EE are permuted, not the columns.

3.2 Protocol Description

As outlined in Section 2.2, the protocol consists of four consecutive phases. We
will now present the details of each phase using the cryptographic primitives
and formal notation introduced in the previous section. Summaries of all phases
are included in corresponding figures at the end of each subsection. Note that
the registration and election preparation phase are identical to the predecessor
protocol in LH15, and vote casting is very similar. To achieve coercion-resistance,
complexity has been added mainly to the tallying phase.

Registration. The first step of the protocol is the registration of voters before
an election. To register, the voter picks a private credential (α, β) ∈R Zq × Zq
at random and computes the public credential u = hα1h

β
2 ∈ Gq. Note that the

private credential is a DL-representation of the public credential. Finally, the
voter sends u over an authentic channel to the election administration.

Registration (Voter):

1. Pick private credential (α, β) ∈R Zq × Zq.
2. Compute public credential u = hα1 h

β
2 ∈ Gq.

3. Send u over an authentic channel to the election administration.

Fig. 1: Summary of the registration phase.

Election Preparation. After the registration phase, the election administration
defines the list U = ((V1, u1), ... , (VN , uN)) based on the electoral roll. Each pair
(Vi, ui) ∈ U links a public credential ui to the corresponding voter identity
Vi. Next, the list A = (a0, ... , aN) of coefficients ai ∈ Zp of the polynomial

P (X) =
∏N
i=1(X − ui) ∈ Zp[X] is computed to allow voters the creation of

the set membership proof during vote casting.5 Finally, an independent election

5 As the computation of the coefficients is quite expensive (1
2
N2 multiplications in Zp),

it is performed by the election administration, possibly already during the registration
phase in an incremental way. Note that the coefficients can be re-computed and
verified by anyone, and voters can efficiently verify the inclusion of their public
credential u by checking P (u) = 0.

generator ĥ ∈ Gq is defined in some publicly reproducible way and (U,A, ĥ) is
posted into the administration’s designated area of the public bulletin board.

Election Preparation (Election Administration):

1. Define U = ((V1, u1), ... , (VN , uN)) based on the electoral roll.
2. Compute coefficients A = (a0, ... , aN) of P (X) =

∏N
i=1(X − ui) ∈ Zp[X].

3. Define election generator ĥ ∈ Gq.
4. Post (U,A, ĥ) into the designated area of the bulletin board.

Fig. 2: Summary of the election preparation phase.

Vote Casting. During the election, voters select their vote by choosing their
preferred election options and encoding them by an element of the set V ⊂ Gq of
valid votes. We assume that the election options, their encoding in V, and the
public key y of the trusted authorities are publicly known.

To cast a vote, the voter computes a commitment C = comp(u, r) of the
public credential and a commitment D = comq(α, β, s) of the private credentials.

Next, the voter computes an encryption E = ency(ĥβ , ρ) of the election credential

ĥβ ∈ Gq and an encryption F = ency(v, σ) of the encoded vote v ∈ V. Finally,
the voter generates three non-interactive zero-knowledge proofs. The first proof,

π1 = NIZKP [(u, r) : C = comp(u, r) ∧ P (u) = 0],

is a set membership proof proving that C is indeed a commitment to the public
credential of one of the eligible voters listed in U. The second proof,

π2 = NIZKP [(u, r, α, β, s) : C = comp(u, r) ∧D = comq(α, β, s) ∧ u = hα1h
β
2],

is a proof of known representation of the committed value in C. It prevents voters
from taking someone else’s credential from U. Finally, the third proof, π3 =

NIZKP [(α, β, s, ρ, v, σ) : D = comq(α, β, s) ∧E = ency(ĥβ , ρ)∧ F = ency(v, σ)],

demonstrates that D and E have been generated using the same value β and
that the vote contained in F is known to the voter. The two commitments, the
two ciphertexts, and the three proofs form the ballot B = (C,D,E, F, π1, π2, π3),
which is posted to the bulletin board over an anonymous channel. The voter
may submit multiple such ballots during the election period. If multiple identical
copies of the same ballot are posted to the bulletin board, we assume that only
one of them is stored.6

6 The bulletin board could also accept multiple copies of the same ballot, which then
need to be eliminated in the tallying phase. But this makes preventing replay and
board flooding attacks more complicated.

Vote Casting (Voter):

1. Select vote v ∈ V.
2. Pick r ∈R Zp and compute C = comp(u, r) ∈ Gp.
3. Pick s ∈R Zq and compute D = comq(α, β, s) ∈ Gq.
4. Pick ρ ∈R Zq and compute E = ency(ĥβ , ρ) ∈ Gq ×Gq.
5. Pick σ ∈R Zq and compute F = ency(v, σ) ∈ Gq ×Gq.
6. Compute non-interactive proofs:

π1 = NIZKP [(u, r) : C = comp(u, r) ∧ P (u) = 0],

π2 = NIZKP [(u, r, α, β, s) : C = comp(u, r) ∧D = comq(α, β, s) ∧ u = hα1 h
β
2],

π3 = NIZKP [(α, β, s, ρ, v, σ) : D = comq(α, β, s)∧
E = ency(ĥβ , ρ) ∧ F = ency(v, σ)].

7. Post B = (C,D,E, F, π1, π2, π3) to the bulletin board over an anonymous
channel.

Fig. 3: Summary of the vote casting phase.

Tallying. At the end of the election period, the ballots submitted to the bulletin
board need to be processed by the trusted authorities. We present this process
by looking at the group of trusted authorities as a single entity performing
the necessary shuffling and decryption tasks jointly. In reality, different trusted
authorities will perform respective tasks using their own secret inputs and random
values. The cryptographic shuffling is a serial and the distributed decryption
(usually) a parallel process.

To initiate the tallying process, the trusted authority retrieves the list B of
all ballots from the bulletin board. We assume that the ballots in B are ordered
according to their submission. The authority verifies the non-interactive proofs
π1, π2, π3 for each ballot (C,D,E, F, π1, π2, π3) ∈ B, and ballots with invalid
proofs are eliminated. From all ballots with valid proofs, the two ciphertexts
(E,F) are selected. We denote the resulting ordered list of such pairs by E =
((E1, F1), ... , (En, Fn)) and assume that E is ordered according to B. This implies
for all j > i that (Ej , Fj) has been cast after (Ei, Fi). Furthermore, the validity
of the proofs guarantees that each (Ei, Fi) ∈ E originates from a person in
possession of valid private credentials. Finally, we know that two distinct pairs
(Ei, Fi), (Ej , Fj) ∈ E belong to the same private credentials, whenever Ei and
Ej contain the same plaintext.

In the next step, the trusted authority computes for each Ei a list Ei =
(Ei,1, ... , ... , Ei,n−1) of ciphertexts

Ei,j =

{
Ej for j < i,

Ej+1/Ei for j ≥ i.

Note that Ei may contain one or multiple encryptions of 1, but only if some
Ej ∈ {Ei+1, ... , En} contain the same plaintext as Ei. If this is the case, then
(Ei, Fi) has been updated and needs to drop out at some point. To determine the
updated votes without decrypting Ei, the authority first performs a cryptographic
shuffle

(E′i, πEi) = shuffleφi
exp(Ei, γi,1, ... , γi,n−1)

on each Ei, where φi ∈R Φn−1 is a random permutation and γi,j ∈R Zq \
{0} are random exponents. The goal of this shuffle is to conceal any plaintext
different from 1. Let E′i = (E′i,1, ... , E

′
i,n−1) be the result of this shuffle and

Fi = (Fi, E
′
i,1, ... , E

′
i,n−1) the extension of this list by inserting Fi at the front.

For FF = (F1, ... ,Fn), the authority performs an additional cryptographic shuffle

(FF′, πFF) = shuffleφreEncy,
(FF, r′1, ... , r

′
n),

for a random permutation φ ∈R Φn and re-encryption randomizations r′i =
(r′i,1, ... , r

′
i,n) ∈ Znq . The purpose of this shuffle is to remove the link to the

original ballots. Let FF′ = (F′1, ... ,F
′
n) be the result of this shuffle and F′i =

(F ′i , E
′′
i,1, ... , E

′′
i,n−1) a single entry of FF′. To determine whether F ′i must be

excluded from the final tally, the authority checks if decx(E′′i,j) = 1 holds for
some j ∈ [1, n− 1]. Let U ⊆ [1, n] be the subset of indices i for which this is the
case, and V = [1, n− 1] \ U the subset of indices for which this is not the case.7

For every i ∈ U , the authority selects from F′i = (F ′i , E
′′
i,1, ... , E

′′
i,n−1) one of the

encryptions E′′i,j containing 1 as plaintext and computes a non-interactive proof

π̃i = NIZKP [(x) : 1 = decx(E′′i,j) ∧ y = hx].

For every i ∈ V , the authority computes Vi = decx(F′i) along with a non-
interactive proof

π̂i = NIZKP [(x) : Vi = decx(F′i) ∧ y = hx].

The final tally is obtained by checking if the plaintext votes at the first position
in every Vi are elements of V and by summing them up if this is the case. To
complete the tallying process, the trusted authority posts

(E, {Ei,E
′
i, πEi

}ni=1,FF,FF′, πFF, U, {E′′i,j , π̃i}i∈U , V, {Vi, π̂i}i∈V)

to the designated area of the public bulletin board.

3.3 Security Properties

We will now look at our protocol from the perspective of its security properties.
We provide an informal discussion of how correctness, everlasting privacy, and
coercion-resistance are achieved. Fairness is achieved in a trivial way by submitting
votes encrypted.

7 Think of U and V as the indices of the updated and valid votes, respectively.

Tallying (Trusted Authority):

1. Retrieve the list B of all ballots from the bulletin board.
2. For each (C,D,E, F, π1, π2, π3) ∈ B, verify π1, π2, π3. Select the pairs (E,F)

from ballots with valid proofs. Let E = ((E1, F1), ... , (En, Fn)) denote the list
of such pairs.

3. Compute FF = (F1, ... ,Fn) by applying to following steps to 1 ≤ i ≤ n:
(a) Compute Ei = (E1, ... , Ei−1, Ei+1/Ei, ... , En/Ei).
(b) Pick φi ∈R Φn−1 and γi,j ∈R Zq \ {0}.
(c) Compute (E′i, πEi) = shuffleφi

exp(Ei, γi,1, ... , γi,n−1).
(d) For E′i = (E′i,1, ... , E

′
i,n−1), let Fi = (Fi, E

′
i,1, ... , E

′
i,n−1).

4. Pick φ ∈R Φe and r′i = (r′i,1, ... , r
′
i,n) ∈R Znq .

5. Compute (FF′, πFF) = shuffleφreEncy
(FF, r′1, ... , r

′
n).

6. Let U = {i ∈ [1, n] : ∃j ∈ [1, n− 1] s.t. decx(E′′i,j) = 1}.
7. For every i ∈ U :

(a) Select E′′i,j from F′i = (F ′i , E
′′
i,1, ... , E

′′
i,n−1) such that decx(E′′i,j) = 1.

(b) Compute π̃i = NIZKP [(x) : 1 = decx(E′′i,j) ∧ y = hx].
8. For every i ∈ V = [1, n] \ U :

(a) Compute Vi = decx(F′i).
(b) Compute π̂i = NIZKP [(x) : Vi = decx(F′i) ∧ y = hx].

9. Post (E, {Ei,E′i, πEi}ni=1,FF,FF
′, πFF, U, {E′′i,j , π̃i}i∈U , V, {Vi, π̂i}i∈V) into

the designated area of the bulletin board.

Fig. 4: Summary of the tallying phase with a single trusted authority.

Correctness. For a present adversary not colluding with any of the trusted
authorities and not in possession of a private credential, there are two principle
ways of creating a ballot that will be accepted in the final tally. First, the

adversary may try to find (α′, β′) such that u = hα
′

1 h
β′

2 for some u in U , which
is equivalent to solving the discrete logarithm problem. Second, the adversary
may try to fake a proof transcript without knowing such a pair (α′, β′), but this
is prevented by the computational soundness of π1, π2, and π3.

If the present adversary is an eligible voter in possession of a valid private
credential, then using it for submitting more than one ballot is explicitly allowed
by the protocol, but only the last ballot is considered in the final tally. The
malicious voter could try to submit ballots with different election credentials, but
the soundness of π3 does not allow this. Without using the private credential,
the voter is not more powerful than any other present adversary.

A present adversary colluding with one or several trusted authorities—or even
the authorities themselves—may try to delete, modify, or add votes in the mixing
or decryption steps of the protocol, but this is prevented by the computational
soundness of πEi , πFF, π̃i, and π̂i. Their correctness can be verified by anyone.

Everlasting Privacy. A ballot posted over an anonymous channel to the bulletin
board contains no information for identifying the voter. Clearly, the future

adversary will be able to determine the private key x, use it to decrypt Ei into
ĥβ , and finally obtain β. As u can be regarded as a perfectly hiding commitment
to β, a suitable value α′ can be found for every credential u′ in U such that
u′ = hα

′

1 h
β
2 . Thus, knowing β and x does not link Ei = ency(ĥ

β , ρ) to u. Since
the proofs π1, π2, and π3 are zero-knowledge and therefore of no additional help,
even a future adversary is unable to break vote or participation secrecy.

Coercion-Resistance. A voter—either voluntarily or under coercion—may prove
the authorship of a ballot by disclosing the randomizations used in the encryptions
Ei and Fi. From this, the coercer learns the values ĥβ and v of a submitted ballot.
To issue a conclusive receipt, the voter must also prove that the ballot is indeed
included in the final tally, for example by proving that every subsequent ballot
has been cast by somebody else. But this is impossible as the voter cannot prove
not to know corresponding randomizations. Alternatively, the voter may try to
show that {Ei+1, ... , En} does not contain an encryption of ĥβ (or equivalently
that Ei does not contain an encryption of 1) or to establish a link between
Fi ∈ FF and F′φ(i) ∈ FF′. Both tasks either require corrupting a majority of
trusted authorities or solving the DDH or DL problem. Hence, the protocol is
receipt-free under ordinary trust or computational intractability assumptions.

Attacks by an active coercer can be countered by the fact that voters cannot
be urged to prove or disprove having cast a final vote in privacy (see reasoning
above). A voter under a randomization attack will therefore follow the coercer’s
instructions and cast a random vote, but then the voter will submit a final vote in
privacy and deny the vote update towards the coercer. For a voter under a forced-
abstention attack, who will simply submit a final vote in privacy, everlasting
participation secrecy is a perfect protection towards the coercer trying to check
the voter’s compliance. Finally, even if the private credentials α and β are handed
over to the coercer in a simulation attack, the voter will always be able use the
credentials for submitting a final vote in privacy and deny it towards the coercer.
The coercer may try to check if vote updating using the same credentials has
taken place, but this is impossible for the reasons explained above and because
the commitments are perfectly hiding.

4 Conclusion

In this paper, we introduced the first cryptographic voting protocol offering
everlasting privacy and coercion-resistance simultaneously. Everlasting privacy
is realized with perfectly hiding commitments and zero-knowledge proofs of
knowledge, and hence does not depend on trusted authorities or computational
intractability assumptions. To achieve coercion-resistance, we propose a new
deniable updating mechanism based on a combination of cryptographic mixing
procedures. Computational intractability assumptions are obviously required for
cryptographic mixing, but this is only problematical if the extent of a coercion
attack exceeds the cryptoperiod of the chosen cryptographic setting. Attacks
against vote or participation secrecy will always remain impossible.

The main drawback of our protocol is the quadratic running time of the
tallying procedure. Compared to LH15, which requires O(n logN) exponentiations
and O(nN) multiplications in Gp to verify all submitted ballots, we require
O(n2) additional exponentiations in Gq. The performance is therefore similar to
AKLM15, i.e., the applicability of our approach is restricted to relatively small
electorates. Implementing our new protocol and analysing its performance to
estimate the maximal possible electorate size is subject of further research.

Some problems remain unsolved in the current version of our protocol. An
open issue is the problem of flooding the bulletin board with a very large number
of valid ballots. This problem is a direct consequence of deniable vote updating.
Another open issue is the problem of a malicious voting platform.

Acknowledgments. We thank the anonymous reviewers for their thorough re-
views and appreciate their comments and suggestions. This research has been sup-
ported by the Swiss National Science Foundation (project No. 200021L 140650).

References

1. Achenbach, D., Kempka, C., Löwe, B., Müller-Quade, J.: Improved coercion-resistant
electronic elections through deniable re-voting. USENIX Journal of Election Tech-
nology and Systems (JETS) (2), 26–45 (2015)

2. Arapinis, M., Cortier, V., Kremer, S., Ryan, M.: Practical everlasting privacy.
POST’13, 2nd Conference on Principles of Security and Trust. pp. 21–40 (2013)

3. Au, M.H., Susilo, W., Mu, Y.: Proof-of-knowledge of representation of committed
value and its applications. ACISP’10, 15th Australasian Conference on Information
Security and Privacy. pp. 352–369 (2010)

4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
EUROCRYPT’12, 31st Annual International Conference on Theory and Applica-
tions of Cryptographic Techniques. pp. 263–280 (2012)

5. Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with
application to blacklists. EUROCRYPT’13, 32nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques. pp. 646–663 (2013)

6. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Building
in Privacy. MIT Press (2000)

7. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections.
WPES’05, 4th Workshop on Privacy in the Electronic Society. pp. 61–70 (2005)

8. Locher, P., Haenni, R.: Verifiable Internet elections with everlasting privacy and
minimal trust. VoteID’15, 5th International Conference on E-Voting and Identity.
pp. 74–91 (2015)

9. Terelius, B., Wikström, D.: Proofs of restricted shuffles. AFRICACRYPT’10, 3rd
International Conference on Cryptology in Africa. pp. 100–113 (2010)

	Coercion-Resistant Internet Voting with Everlasting Privacy

