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End-to-End Verifiability

Public PhD Defence Page 4



Verifiable E-Voting

Public PhD Defence Page 5



Verifiable E-Voting

Public PhD Defence Page 5



Mix-Net

Public PhD Defence Page 6



Properties of an E-Voting System

Verifiability The result can be verified (combination of individual
and universal verifiability)

Privacy Voter’s privacy is guaranteed, if possible in an
everlasting or unconditional manner

Coercion-Resistance A briber or coercer does not succeed in trying
to influence the vote of a voter
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Current E-Voting Schemes

I Verifiability is a must requirement

I Privacy is a must requirement, however it relies either on
some computational intractability assumptions or on a
number of trusted authorities

I There are approaches for receipt-freeness and
coercion-resistance, however most are lacking in usability
and/or performance
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Contributions

Theoretical:

I A new e-voting scheme offering unconditional privacy

I Further development of the scheme to provide receipt-freeness
and coercion-resistance

Practical:

I Developing UniVote, an e-voting system for student board
elections

I Implementing a shuffle proof, an important but complex
building block in many e-voting schemes
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Cryptographic Preliminaries

I One-way functions: y = f (x) can be computed efficiently but
there is no algorithm known to compute x = f −1(y)
efficiently (e.g. y = g x mod p)

I Commitments: commit oneself to a particular value without
revealing the value right away but maybe once in the future
(e.g. Pedersen commitment c = com(r , v) = g rhv )

I Pubic-key encryptions: encrypt a message using a publicly
known key pk such that the message can be decrypted only
with the knowledge of a secret key sk (e.g. ElGamal
encryption: e = encpk(r ,m) = (g r , pk rm) with pk = g sk)

I Non-interactive zero-knowledge proofs of knowledge: prove
knowledge without revealing anything about the knowledge
(e.g. NIZKP[(x) : y = g x ])
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The Basic Scheme

I Registration: the voter selects a private credential (α, β) and
sends the public credential u = com(α, β) over an authentic
channel to the Bulletin Board

I Vote casting: the voter computes

Ý an election credential û = ĝβ

Ý two commitments c = com(r , u) and d = com(s, α, β)
Ý a NIZKP proving that u committed to in c is a registered

credential, that (α, β) committed to in d is the corresponding
private credential and that the same β has been used for û

and sends the ballot containing the vote, û, c , d and the proof
over an anonymous channel to the Bulletin Board

I Public Tallying: all data is retrieved from the Bulletin Board
and the final tally is derived from the votes with valid proofs
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The Basic Scheme

I Almost no central infrastructure, only a Bulletin Board

I No trusted authorities (except for fairness)

I Computational intractability assumptions are only required to
guarantee correctness during vote casting

I Performance: ballot generation and verification require a
logarithmic number of exponentiations and a linearithmic
number multiplications

I The Tor network based on onion routing is a practical
anonymous channel
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The Receipt-Free Scheme

I A voter is allowed to cast multiple ballots

I The sum of all cast votes represents voter’s final vote

I The votes and the election credentials must be encrypted

I A voter gets a receipt for each cast ballot, however the voter
cannot prove not to have cast any other ballot

I The votes and the election credentials are mixed before all
votes with the same election credential are summed up under
encryption

I The summed up votes are decrypted and the final tally
determined
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The Coercion-Resistant Scheme

I A voter may cast multiple ballots, but only the last vote is
included in the final tally

I Under coercion, the voter follows exactly coercer’s instructions

I A coercer is unable to recognize whether or not a voter has
cast another ballot after coercion

I This principle is called deniable vote updating
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The Coercion-Resistant Scheme

I The votes and the election credentials must be encrypted:
E = enc(ĥβ, ρ), F = enc(vote, σ)

I To make sure, the information whether or not a vote has been
updated is not lost during mixing, the mix-net must be
applied to a quadratic number of input encryptions

I To render the scheme practical for large scale elections, it
must be further improved
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The Coercion-Resistant Scheme

The expensive mixing process consists of two steps:

1. Compute the lists Ei and apply to each list an exponential
shuffle E′i = shuffleexp(Ei )

E1

E2

E3
...

En

 =


E2/E1 E3/E1 E4/E1 . . . En/E1

E1 E3/E2 E4/E2 . . . En/E2

E1 E2 E4/E3 . . . En/E3
...

...
E1 E2 E3 . . . En−1



2. Apply to the list F = ((F1,E′1), . . . , (Fn,E′n)) a re-encryption
shuffle F′ = shufflereEnc(F)
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UniCrypt

I Cryptographic library providing the cryptographic building
blocks used to implement e-voting systems

I Intended to bridge the gap between cryptography and
software development

I Offers type safety on a mathematical level

I Contains an implementation of a shuffle proof

I Implemented in Java

Public PhD Defence Page 19



UniCrypt

Crypto

Math

Utils

Scheme
Key

Generator
Encoder Mixer

Proof
System

Algebra Function

Helper Random
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Proof System

Proof System

Sigma Shu✏e

Preimage

Plain

And

Equality

Validity

ElGamal Encryption

Pedersen Commitment

Or

Double Discrete Log

Poly. Evaluation

Poly. Set Membership

ReEncryption

Identity

Permutation Commitment

Inequality of Preimages
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Wikström/Terelius’s Shuffle Proof

Two steps:

1. Commit to a permutation matrix and prove that the resulting
commitment indeed contains a permutation matrix

2. Shuffle the input batch according to the permutation matrix
committed to in step 1 and prove additionally that the shuffle
function has been correctly applied
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Wikström/Terelius’s Shuffle Proof

An N × N - matrix M is a permutation matrix if there is exactly
one non-zero element in each row and column and if this non-zero
element is equal to one

Example: 0 0 1
1 0 0
0 1 0

x1
x2
x3

 =

x3
x1
x2



Theorem (Permutation Matrix) [TW10]:

N∏
i=1

x ′i =
N∏
i=1

xi and M 1̄ = 1̄

With X = (x1, . . . , xN) a vector of N independent variables and
X ′ = (x ′

1, . . . , x
′
N) = MX
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UniVote

I An e-voting system for student board elections at Swiss
universities

I Mix-Net based approach offering participation privacy

I Requirement of late registration

I Kind of a prototype to demonstrate verifiable e-voting

I Not a perfect system, some strong assumptions and cutbacks

I Verification software by a student project

I The project started in 2012 and UniVote2 in 2014
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UniVote

Electorate Turnout

SUB StudentInnenratswahl 2013 11’249 1’008 9.0%
VSBFH Studierendenratswahl 2013 5’720 269 4.7%
VSUZH-Ratswahl 2013 26’186 3’138 12.0%
SOL StudRat Wahlen 2013 2’715 276 10.2%
University of Lucerne: Best Teacher Award 2013 2’723 137 5.0%
VSBFH Studierendenratswahl 2014 6’662 137 2.1%
University of Lucerne: Best Teacher Award 2014 2’832 40 1.4%
SUB StudentInnenratswahl 2015 11’679 1’934 16.6%
VSUZH-Ratswahl 2015 25’707 2’273 8.8%
VSBFH Studierendenratswahl 2015 6’431 148 2.3%
SKUBA Urabstimmung 12. - 16. Oktober 2015 9’880 1’202 12.2%
University of Lucerne: Best Teacher Award 2015 2’878 116 4.0%
SOL StudRat Wahlen 2015 2’878 435 15.1%
VSBFH Studierendenratswahl 2016 6’108 148 2.4%

123’648 11’261 9.1%

Table: Elections and referendums held with UniVote until mid-2016.
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Conclusion

Don’t let e-voting undermine voter’s privacy
through the back door!

I The secret ballot longs for unconditional vote privacy

I The public understanding for the problems and challenges in
e-voting must be increased
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Publications

Theoretical Work:

VOTE-ID 2015 Verifiable Internet Elections with Everlasting
Privacy and Minimal Trust; with R. Haenni

FC 2016 Coercion-Resistant Internet Voting with Everlasting
Privacy; with R. Haenni und R. E. Koenig

AoT 2016 Receipt-Free Remote Electronic Elections with
Everlasting Privacy; with R. Haenni

Practical Work:

INFORMATIK 2013 Verifizierbare Internet-Wahlen an Schweizer
Hochschulen mit UniVote; with E. Dubuis, S. Fischli,
R. Haenni, S. Hauser, R. E. Koenig and J. Ritter

INFORMATIK 2014 A Lightweight Implementation of a Shuffle
Proof for Electronic Voting Systems; with R. Haenni
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