
Bern University of Applied Sciences (BFH)

Bachelor Thesis

Visualizing Geneva's Next Generation E-Voting System

Authors Kevin Häni <kevin.haeni@gmail.com>
Yannick Denzer <yannick@denzer.ch>

Supervisors Prof. Dr. Rolf Haenni <rolf.haenni@bfh.ch>
Prof. Dr. Philipp Locher <philipp.locher@bfh.ch>

Expert Han van der Kleij <han.vanderkleij@sbb.ch>

Bern, January 14, 2018

mailto:kevin.haeni@gmail.com
mailto:yannick@denzer.ch
mailto:rolf.haenni@bfh.ch
mailto:philipp.locher@bfh.ch
mailto:han.vanderkleij@sbb.ch

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Contents

1 Introduction 5

1.1 Electronic Voting . 5
1.2 CHVote Protocol . 6
1.3 Project Task . 6

2 Project Management 9

2.1 Goals . 9
2.1.1 General Requirements . 9
2.1.2 Election Overview . 10
2.1.3 Election Administrator . 10
2.1.4 Printing Authority . 10
2.1.5 Election Authority . 10
2.1.6 Voter . 11
2.1.7 Bulletin Board . 11
2.1.8 Out-of-Scope . 11

2.2 Time Schedule & Implementation Phases . 12
2.3 Use Cases . 14

3 CHVote Protocol 15

3.1 Actors . 15
3.2 Pre-Election & Voting Cards . 16
3.3 Vote Casting with Oblivious Transfers . 16
3.4 Anonymity with a Re-Encryption Mix-Net . 17

4 Application Description 19

4.1 Application Overview . 19
4.2 Design . 21

5 Technical Implementation 25

5.1 Technology & Language Decisions . 26
5.2 Architecture . 27
5.3 Back-End . 28

5.3.1 VoteService . 29
5.3.2 Data-Sync Service . 33
5.3.3 REST API . 36

5.4 Crypto-Library . 38
5.4.1 File Structure . 38
5.4.2 Public Parameters . 39

Page 2 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

5.4.3 Coding Style . 39
5.4.4 Return Types . 41

5.5 Front-End . 42
5.5.1 Components . 42
5.5.2 Centralized Data-Store & Flux Pattern 45
5.5.3 Internationalization (i18n) . 45
5.5.4 Development Environment . 46
5.5.5 Staging Environment . 46

5.6 Challenges . 46
5.6.1 WebSocket Subscription Concept . 46
5.6.2 Python Issues . 47

5.7 Automatic Task Processing for Election Authorities 48
5.8 Testing . 49

6 Conclusion 51

7 Appendix 55

7.1 Sourcecode . 55
7.2 Use Cases . 55
7.3 Test Cases . 62

Page 3 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Management Summary

The following documentation describes the context, planning and implementation of an appli-
cation intended to visualize a new e-voting protocol. The protocol our application is based
on is described in the paper "CHVote System Speci�cation" of Rolf Haenni, Reto E. Koenig,
Philipp Locher and Eric Dubuis of the Research Institute for Security in the Information So-
ciety (RISIS) of the Bern University of Applied Sciences. Their speci�cations describe how to
build a next generation e-voting protocol which satis�es the complex requirements set up by
the Swiss government, such as allowing an e-voting system to include large electorates.

Previous attempts to establish e-voting platforms in Switzerland were limited to only a small
percentage of the electorate, for example Swiss citizens living abroad, because they only met
the basic requirements, set up by the government. There exist many concepts and e-voting
protocols which satisfy basic requirements, such as the privacy of the voters. However, an
e-voting platform that could be used on a nationwide scale needs to be both individually and
universally veri�able. This means in essence that an external individual can verify that all, but
only valid votes have been counted in the tally. Current systems were behaving more like a
black box and were not transparent enough to allow that kind of veri�cation.

Another challenge which e-voting is facing is the educational problem: it is di�cult to un-
derstand such a complex protocol without su�cient knowledge of cryptography. This might
result in mistrust towards e-voting.

The goal of this project is to develop an application that addresses the educational problem
of e-voting by allowing users to get a hands-on experience with the whole voting process from
the perspective of each participating actor of the protocol. This would allow users to gain a
better understanding of the next generation e-voting platform. The system should also be able
to display multiple perspectives on di�erent screens which requires real-time synchronization
of data.

This document will �rst introduce the context of e-voting and our project task. Next it will
describe the planning aspects such as the requirements and the time schedule. A short summary
of the most important aspects of the CHVote protocol should establish the terminology and
background knowledge for better understanding of our work. The main goal of this paper is
to document in detail the implementation of our application, such as the architecture and the
challenges we were facing. The document concludes with a short summary and re�ection.

Page 4 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

1 Introduction

With the ongoing digital transformation it seems only a matter of time until the shift from
paper based ballots to electronic voting (e-voting). Recent polls show that the majority of the
Swiss population is interested in having the possibility to vote online 1. However, e-voting is a
very complex topic and designing a secure e-voting protocol is notoriously challenging in terms
of IT-security and cryptography.

1.1 Electronic Voting

First trials with e-voting in Switzerland date back to 2003 [4]. Since 2015, it has been possible
for Swiss citizens registered in the cantons of Geneva and Neuchâtel and living abroad to vote
electronically [3]. These systems were available only for a limited electorate size since they did
not yet meet the requirements in terms of security and transparency to be accepted as a secure
e-voting platform on a nationwide scale.

An e-voting system must satisfy a large variety of security requirements set up by the gov-
ernment, including:

� Privacy: no one can �nd out information about a voter's candidate selection. This implies
that a voter's ballot must be encrypted before it leaves the voter's client and until the
election is tallied.

� Fairness: no one is able to learn the intermediate result or the outcome of an election
before the result has been o�cially tallied and published to a public board.

� Authenticity: all voters must be authenticated as eligible voters in order to cast a vote.

� Soundness: only valid votes are being tallied. If a voter selects more candidates than he
is allowed to or less than he is supposed to, the vote must not be counted.

� Robustness: an e-voting system detects cheating actors.

� Distribution of Trust: the security of an e-voting system must not rely on a single point
of trust.

[2]

1https://www.swissinfo.ch/ger/umfrage_grosse-zustimmung-zu-e-voting-trotz-sicherheitsbedenken/

42457426

Page 5 of 65

https://www.swissinfo.ch/ger/umfrage_grosse-zustimmung-zu-e-voting-trotz-sicherheitsbedenken/42457426
https://www.swissinfo.ch/ger/umfrage_grosse-zustimmung-zu-e-voting-trotz-sicherheitsbedenken/42457426

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

There exist many di�erent concepts and e-voting protocols that cover many of the basic
requirements. However, existing solutions typically behave like a black-box and keep the inter-
nals hidden, such that a voter cannot be sure whether his vote has been recorded correctly and
counted in the �nal result.

A common problem is the insecure platform problem: if a voter's computer is a�ected
by malware, the vote casting process is no longer under the voter's control and the candidate
selection could be possibly manipulated without the voter's notice. It must be individually
veri�able to every voter that his intended vote has been recorded, while at the same time the
voter's privacy must still be ensured at all times [1].

One of the requirements that is the hardest to achieve is the universal veri�cation: a good
e-voting system must be transparent and allow an external person to verify that every protocol
participant has abided by the protocol and that all and only valid votes have been counted
correctly.

Should an e-voting system be available to more than 30% of the respective cantonal electorate,
it must be individually veri�able; if 50% - both individually as well as universally [2].

1.2 CHVote Protocol

Some of the mentioned requirements might sound as a paradox at �rst. However, they can
be solved by advanced cryptography. A contract was formed between the state of Geneva and
the Research Institute for Security in the Information Society (RISIS) of the Bern University
of Applied Sciences to work out a new protocol which meets the complex requirements set
up by the Swiss government. In 2017, Rolf Haenni, Reto E. Koenig, Philipp Locher and
Eric Dubuis published the resulting speci�cation document and a proof-of-concept has been
successfully implemented by the State of Geneva. Geneva is currently developing a new version
of their e-voting system with the name CHVote, based on these speci�cations. Other cantons,
currently St. Gallen, Aargau, Bern and Lucerne have announced their interest in cooperating
with Geneva and might use their system in future.

The CHVote speci�cations document is publicly available and describes not only the theo-
retical background but also provides pseudocode for the approximately 60 algorithms that are
needed to implement their protocol.

Chapter 3 will summarize the most important aspects of the CHVote speci�cations for a
better understanding of our work.

1.3 Project Task

An additional problem with which e-voting is confronted is that understanding such a complex
protocol is not easy without good knowledge of cryptography and mathematics. This might be

Page 6 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

one of the reasons why many people still do not trust electronic voting systems.

In close consultation with the authors of the CHVote speci�cations, we were looking for an
interesting project for our bachelor thesis in the thematic �eld of e-voting. We decided to study
the CHVote speci�cations, implement the protocol and build an application on top of it.

Figure 1.1: The initial task description of the bachelor thesis left a number of open possibilities
as to how exactly the project could be implemented. Speci�c tasks and requirements
were discussed with our supervisors during the �rst few weeks of the project.

Based on the initial, rather general task description (see �gure 1.1), there were several pos-
sibilities regarding the �nal product, such as a realistic prototype, a veri�er software for the
implementation which is being developed in Geneva, or an application that targets the educa-
tional problem and can be used to demonstrate the functionality of the new protocol.

Ultimately, we have decided to implement the last option: the goal of our project was to
develop a web-based application which allows to visualize every step of a CHVote election
event, from the pre-election tasks like generating the electorate data, casting and con�rming
ballots from a voter's point of view, to the post-election processes like mixing, decryption and
tallying. The main goal of our project was not to implement a secure, "ready for production"

Page 7 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

e-voting system from an infrastructural perspective, but more the visualization and the user-
interface. With the resulting application users would be allowed to get a hands-on experience
with Geneva's new e-voting system and a preview of how the future of voting in Switzerland
might possibly look like.

Studying of the speci�cations and the development of the approximately 60 algorithms that
were de�ned as pseudocode in the speci�cations was done as preparatory work during the
course "Project 2", which we had �nished just before the start of the bachelor thesis. The
resulting set of algorithms have been used as a library for implementing the protocol on which
our application is built.

Outline of this document: in chapter 2 we will further discuss the goals and requirements
that we have set for this project. Additionally, it covers the time planning and the project
methodology.

For better understanding of our application, chapter 3 contains a short summary of the
CHVote speci�cations document and establishes the terminology and theoretical background.

Chapter 4 will describe the �nal product and the concepts behind our application.

Chapter 5 covers the technical aspects regarding the implementation, such as the architecture,
the language and technology decisions. Later sections contain detailed information about the
internals of each component of our application and the challenges we were facing during the
implementation phase.

Chapter 6 will conclude this document with a short summary and a re�ection about the
project.

Page 8 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

2 Project Management

This chapter describes the several aspects of the project planning such as the project method,
the requirements and use-cases as well as the time schedule.

Since this was not a project where the scope and goals were strictly de�ned and clear from
the very beginning, it was important to elaborate the requirements in close collaboration with
our supervisors early on. This is why we decided our project would be very suitable for an
agile kind of project method. Because of the small team consisting of only two members, we
did not choose a particular project method like SCRUM, as this would have probably caused
more overhead than actual bene�ts.

We have therefore set up regular meetings (usually once every 2 weeks) with our supervisors
to discuss our ideas and get feedback about the current progress.

2.1 Goals

As the �rst step, we have elaborated the goals and requirements for our application. We have
structured the requirements into groups which correspond to the actors of the CHVote protocol
and therefore the views our application is going to consist of.

Some requirements a�ect multiple or all actors and are therefore listed as "General Require-
ments". We have also added a priority and requirement type to simplify the planning and time
management.

2.1.1 General Requirements

Description Type Prio. Phase Status
R1 The CHVote protocol is implemented as speci�ed

in the latest speci�cation document. The only ex-
ceptions are the algorithms for channel security.

Must High 1 Done

R2 The application is web-based and shows updates
within the same demo-election event in real-time.

Must High 1 Done

R3 The system supports 1-out-of-3 type of elections
(e.g. elect 1 of 3 possible candidates).

Must High 1 Done

R4 The system supports multiple parallel election
events.

Must High 1 Done

Page 9 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

R5 Users can create new elections. Must High 1 Done
R6 The system supports internationalization. Provid-

ing more than one language is not required.
Must Med. 1 Done

R7 The system can handle k-out-of-n type of elections. Can Med. 1 Done

2.1.2 Election Overview

Description Type Prio. Phase Status
R8 The overview shows which phase the election is

currently in.
Must High 2 Done

R9 A graphical scheme of the CHVote protocol gives
an overview of all participating parties.

Must Med. 2 Done

2.1.3 Election Administrator

Description Type Prio. Phase Status
R10 An election can be set up by providing all required

information such as the candidates, the number
of parallel voters, the number of voters and the
number of selections (simpli�ed JSON input).

Must High 1 Done

R11 The election can be set up without entering the
parameters in JSON format and allows an easier
set up of elections with multiple parallel election
events.

Must Low 2 Done

R12 The election administrator view allows to perform
the tallying and displays the �nal result of an elec-
tion in numbers and a pie chart.

Must High 1 Done

R13 During election setup, the security parameters can
be chosen from a set of prede�ned parameters.

Can Low 2 Done

2.1.4 Printing Authority

Description Type Prio. Phase Status
R14 Users can generate and display voting cards for an

election.
Must High 1 Done

R15 Voting cards hide sensitive information behind a
scratch card.

Can Med. 2 Done

2.1.5 Election Authority

Description Type Prio. Phase Status

Page 10 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

R16 The election authority view shows all information
known to the election authority.

Must High 1 Done

R17 After a voter has submitted a ballot, all election
authorities can check and respond to the voter's
submission.

Must High 1 Done

R18 In the post-election phase, all election authorities
can perform the mixing and decryption tasks.

Must High 2 Done

R19 Each authority can optionally process all tasks au-
tomatically.

Can High 2 Done

2.1.6 Voter

Description Type Prio. Phase Status
R20 Users are able to go through the whole vote-casting

process for every voter.
Must High 1 Done

R21 The voting card of a voter is displayed on the
screen. The voting and con�rmation codes can be
copied into the input text�elds by double clicking.

Must Med. 1 Done

2.1.7 Bulletin Board

Description Type Prio. Phase Status
R22 The bulletin board view shows which information

is publicly available.
Must High 1 Done

R23 The bulletin board view is extended with veri�ca-
tion functionality.

Can Low 2 Done

2.1.8 Out-of-Scope

The following topics are considered out-of-scope for the duration of the project:

� The goal of the project is not to build a realistic prototype. Therefore, the whole back-
end will run on a single server while in a reality there would be components running
on distributed servers. Another di�erence between our implementation and a productive
implementation is that our application generates the ballots on the server. In a productive
environment, the ballots would have to be generated on the client for security reasons.
This, however, would require us to rewrite many of the already implemented algorithms
in JavaScript.

� The protocol takes into account that not all voters might be eligible to vote in all elections
of a given election event (eligibility matrix). For simplicity, we assume that all voters are
eligible to vote in every election of our application.

Page 11 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

� Message level encryption and signature based integrity protection are very important in
a productive implementation of an e-voting system and are also described in the CHVote
speci�cations. However, since our system is only used for demonstration purposes and we
do not have a distributed infrastructure, there is no real need for channel security in the
project.

� Providing more than one language is also out-of-scope. If there is enough time, a second
language might be provided optionally.

2.2 Time Schedule & Implementation Phases

As the next step, we created a time schedule and structured our project into smaller units of
work.

The actual implementation phase has been broken down into two phases:

� Phase 1 includes the implementation of all high priority must-requirements, which means
basically developing an application that allows to visualize the whole CHVote election
process. We have agreed that after phase 1 some parts of the user interface would still be
in a rather primitive state (eg. user inputs and components used for data display will not
yet be very user friendly and of more technical nature, for example in the JSON format).

� For phase 2 we planned implementing the can-requirements and all must-requirements
with lower priority as well as improving the whole user experience.

This approach reduced the risk of hidden technical limitations of our architecture which could
result in time-consuming architectural changes.

Page 12 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

P
r
o
je
c
t
T
a
s
k
s

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

D
o
c
u
m
e
n
t
a
t
io
n

U
p
d
a
te

d
o
c
u
m
e
n
ta
ti
o
n
a
n
d
jo
u
rn
a
l

so
ll

5

is
t

5

C
o
n
c
e
p
t

W
o
rk
in
g
o
u
t
g
o
a
ls
/
re
q
u
ir
e
m
e
n
ts

so
ll

is
t

C
o
n
c
e
p
t

so
ll

is
t

I
m
p
le
m
e
n
t
a
t
io
n

U
p
d
a
te

C
H
V
o
te

c
ry
p
to
li
b
ra
ry

to
th
e
la
st
e
st

sp
e
c
i�
c
a
ti
o
n

so
ll

1

is
t

1

P
ro
to
ty
p
in
g
(p
ro
o
f
o
f
c
o
n
c
e
p
t)

so
ll

2

is
t

2

I
t
e
r
a
t
io
n
1

Im
p
le
m
e
n
t
b
a
c
k
e
n
d
A
P
I

so
ll

is
t

Im
p
le
m
e
n
t
fr
o
n
te
n
d
:
P
re
-e
le
c
ti
o
n

so
ll

is
t

Im
p
le
m
e
n
t
fr
o
n
te
n
d
:
E
le
c
ti
o
n

so
ll

is
t

Im
p
le
m
e
n
t
fr
o
n
te
n
d
:
P
o
st
-e
le
c
ti
o
n

so
ll

3

is
t

3

I
t
e
r
a
t
io
n
2

A
u
to
m
a
ti
o
n
o
f
e
le
c
ti
o
n
a
u
th
o
ri
ty

(R
1
9
)

so
ll

is
t

V
o
ti
n
g
C
a
rd

la
y
o
u
t,
S
c
ra
tc
h
c
a
rd

(R
1
5
)

so
ll

is
t

E
le
c
ti
o
n
O
v
e
rv
ie
w
(R

8
,
R
9
)

so
ll

is
t

4

k
-o
u
t-
o
f-
n
e
le
c
ti
o
n
ty
p
e
s
(R

7
)

so
ll

is
t

Im
p
ro
v
in
g
th
e
in
p
u
t
fo
rm

s
a
n
d
la
y
o
u
t
(R

1
1
)

so
ll

is
t

F
le
x
ib
le

se
c
u
ri
ty

le
v
e
l
(R

1
3
)

so
ll

is
t

V
e
ri
�
e
r
fu
n
c
ti
o
n
a
li
ty

(R
2
3
)
a
n
d
re
se
rv
e

so
ll

4
is
t

P
r
o
je
c
t
c
o
m
p
le
t
io
n

P
o
st
e
r,
F
in
a
l
D
a
y
,
P
re
se
n
ta
ti
o
n

so
ll

is
t

T
ab
le
2.
8:
P
ro
je
ct

sc
h
ed
u
le

Page 13 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

The following milestones have been de�ned based on the requirements:

� M1: Implementation of the CHVote crypto-library is �nished.

� M2: A proof-of-concept / prototype for our application has been drawn up.

� M3: Implementation phase 1 is �nished (all must-criteria with a high priority are met).

� M4: Implementation phase 2 is �nished (all requirements including the can-criteria are
met).

� M5: The documentation is �nished.

2.3 Use Cases

As the next step, we have converted the requirements into use cases, by grouping them according
to the actors. One use case is shown as an example. Please refer to the appendix for a complete
list of use cases.

Table 2.9: Use Case �Casting of a vote�

Use Case Casting of a vote

Primary Actor Voter
Description The voter can cast a vote by selecting his favored candidate(s) and

his voting code
Precondition

� The election has the status "Election Phase"
� A voter is selected in the voter view
� The voter has the status "Vote Casting Phase"

Postcondition The �rst election authority receives a ballot-check task
Main path
(M)

1. The voter visits the voter view and selects his voter object
2. The system demands a selection of the candidates and the

voter's voting code
3. The voter clicks on "Cast ballot"

Page 14 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

3 CHVote Protocol

Our project is based on the CHVote protocol speci�cations. We would like to point out that this
protocol and the following ideas do not originate from us! The concept and speci�cations have
been created by Rolf Haenni, Reto E. Koenig, Philipp Locher and Eric Dubuis of the Institute
for Security in the Information Society (RISIS) of the Bern University of Applied Sciences. For
this project, we have implemented the protocol according to their speci�cations. In this section
we summarize the most important aspects of the protocol and establish the terminology for
better understanding of this document and our application.

3.1 Actors

A voter is a person who is eligible to vote in his respective state. Every voter is assigned
a counting circle which typically corresponds to the voter's municipal and is required for
statistical purposes. For authentication purposes, every voter must possess a voting card which
has been sent to him prior to an election event and which contains codes used to identify the
voter during the vote casting process.

The Election Administrator, typically a person of the government, is responsible for
setting up the election event by providing the required information such as the candidates
or the voters and initiates the generation of the cryptographic electorate data. He is also
responsible for tallying the election and publishing the �nal results.

The election authorities can be seen as some kind of independent election observers. In a
CHVote election event there are always multiple election authorities in order to avoid having
to trust a single authority. The authorities are involved in almost every step of the protocol,
starting from the generation of their shares of the electorate data, checking and responding
to new ballots, as well as in the mixing (a measure to ensure anonymity) and decryption
phases. The public key that is used for encrypting the ballots has been jointly generated by all
the election authorities. Therefore, in order to decrypt the ballots, all authorities must work
together and provide their share of the private key.

The measure of multiple authorities participating in the whole e-voting process establishes
a distribution of trust and ensures security of the whole election process as long as at least
one election authority can be trusted.

The Bulletin Board acts as a central board over which most communication is done and
where all the public data is stored. Publishing all data that is not secret onto a public board,

Page 15 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

including the list of encrypted ballots, and functionality to verify the correctness of these data
prove that the protocol has made a big step towards the demanded transparency and the
universal veri�cation.

The Printing Authority is responsible for printing the voting cards for all voters. Since the
printing authority needs to be in possession of all the secret voting codes, it is a very sensitive
point in the protocol. The printed voting cards are handed over to a trusted mailing service
for delivery.

3.2 Pre-Election & Voting Cards

Before the actual election phase, the election administrator sets up the election event by entering
all required parameters, including the number of voters, the elections with their corresponding
candidates and the number of candidates a voter can select in every election. All election
authorities jointly generate the cryptographic data for the whole electorate from which the
voting card information is derived. The printing authority combines the information from all
the election authorities, prints the voting cards and delivers them to the voters by a trusted
mailing service.

A voting card contains several codes, namely:

� a voting code;

� a con�rmation code;

� a �nalization code;

� one veri�cation code for every candidate.

The voting and con�rmation codes are authentication codes and are used to authenticate
the voter twice during the vote casting process; the �rst time with the voting code when they
cast their vote, and the second time for con�rming their vote. The second authentication code
is required because otherwise an attacker who could have infected a voter's computer with
malware could just con�rm the vote on behalf of the voter after he manipulated the candidate
selection and could therefore skip the whole veri�cation process.

3.3 Vote Casting with Oblivious Transfers

As mentioned earlier, one of the big challenges of an e-voting-protocol is dealing with the
insecure platform problem: a voting platform that is infected with malware poses a risk that
an attacker could manipulate the candidate selection on the vote-casting page after the voter
has entered his voting code.

Page 16 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

The CHVote speci�cation suggests a "Cast-as-intended veri�cation"-step to allow voters to
detect this kind of manipulation: when a voter enters his voting code and the indices of his
favored candidates, the voting client forms a ballot containing the voter's selection encrypted
with the authorities' public key, his public voting credential derived from the voting code,
and a non-interactive zero knowledge proof which proofs that the voter has formed the
ballot according to the protocol and that he has been in knowledge of his voting code, without
revealing any information about the voting code.

Every election authority has to check the voters public voting credential, the validity of the
ballot proof and that the voter has not already cast a vote. The encrypted selection also serves
as a query for an oblivious transfer. A k-out-of-n oblivious transfer allows a client to query
a server for k messages, without the server knowing what messages the client requested and
without the client learning anything about the other n− k messages. Adapted to the CHVote
protocol: the voting client queries the authorities for the corresponding veri�cation codes of the
selected candidates, without the authorities learning which candidates the voter has selected
and without revealing any information about the other candidates.

The voter then checks if the returned veri�cation codes match the codes of the candidates he
has chosen on the printed voting card. If the selection was somehow manipulated by malware,
the returned veri�cation codes would not match the printed ones and the voter would have
to abort the vote casting process. This way the integrity of the vote casting process can be
guaranteed even in the presence of malware.

Another feature the protocol supports is that an election event can consist of t multiple
parallel elections. In such cases, the voter has to submit a single ballot, which contains his
candidate selection for all parallel elections. This raises the question of how the system can
verify that a voter has chosen exactly the correct number of candidate in each election, and not
for example one less in the �rst and one additional candidate in the second election.

The speci�cation suggests the following trick: assuming an election consists of two parallel
elections (t = 2) with 3 candidates each (n1 = 3, n2 = 3), and a voter can select one candidate
in each election (k1 = k2 = 1). The veri�cation codes are derived from n =

∑t
j=1 nj random

points on t polynomials (one for every election event j) of degree kj − 1, that each election
authority has chosen randomly prior to the election. By learning exactly k =

∑t
n=1 kj points

on these polynomials, the voting client is able to reproduce these polynomials and therefore
is able to calculate a particular point with x = 0 on these polynomials. The corresponding y
values are incorporated into the second credential from which the con�rmation code is derived.
As a result, only if a voter has been able to reconstruct these polynomials with the returned
points by submitting a valid candidate selection, he will be able to con�rm the vote that he
has cast.

3.4 Anonymity with a Re-Encryption Mix-Net

As mentioned earlier, both the election authorities as well as the bulletin board keep track of
all the cast ballots, which contain the voter's candidate selection encrypted under the public

Page 17 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

key which has been jointly generated by all election authorities. Up to this point, the ballots
are still linked to the voters, since the voter's identi�er is required for the con�rmation process
and to avoid the voter casting multiple ballots. If the ballots were decrypted now, this would
con�ict with the anonymity and the privacy of the voters.

As the �rst step of the post-election phase, the �rst election authority extracts the encrypted
candidate selections from the ballots. In order to anonymize this list of encryptions, the protocol
suggests a "mixing-process", in which every authority performs a cryptographic shu�e with a
random permutation. Additionally, all the encryptions are re-encrypted such that they receive
a new ciphertext. This re-encryption is done by using the multiplicative homomorphic property
of the ElGamal encryption scheme that is used for encrypting the ballots. A multiplicative

homomorphic encryption scheme allows to perform multiplications on the ciphertext such
that:

Enc(a) · Enc(b) = Enc(a · b)

The speci�cation suggests multiplying the encrypted selection with the encryption of the
neutral element 1 since this yields a new ciphertext for the exact same plaintext.

Enc(a) · Enc(1) = Enc(a)

Voter
Voter 1
Voter 2
Voter 3
Voter 4
Voter 5

Encryp�on
12345…
23456…
35453…
42342…
53234…

Encryp�on
12345…
23456…
35453…
42342…
53234…

Encryp�on
23456…
12345…
53234…
35453…
42342…

Extract encryp�ons Shuffle

Encryp�on
75564…
65781…
61542…
12548…
35656…

Re-Encryp�on

Figure 3.1: During the mixing phase, the encryptions are extracted from the list of ballots and
then shu�ed with a random permutation and re-encrypted by all election authori-
ties. This measure ensures the anonymity of the votes.

While the extraction only needs to be done by the �rst election authority, every election au-
thority is sequentially performing the shu�e and re-encryption of the mixed list of the previous
election authority.

To prevent election authorities from cheating and not performing the mixing as speci�ed, a
proof is calculated which will be veri�ed by all election authorities before decryption. If one of
these shu�e-proofs is invalid, the election process will not proceed.

Page 18 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

4 Application Description

This chapter describes the product of our bachelor thesis and the main component of our
application - the visualizer web-application (front-end). We will focus mainly on the non-
technical concepts as the next chapter will cover the technical aspects.

4.1 Application Overview

In essence, the functionality of our application revolves around visualizing an election event
according to the CHVote protocol and guiding the users through its several phases. A typical
CHVote election event can be broken down into phases shown in �gure 4.1

To give the users an opportunity to experience and gain insight into the functionality of the
protocol a concept was implemented which enables them to take the perspective of every actor
of the protocol at any given time and during each phase of the election event. This is why our
application is divided into separate views, one for each actor:

Every actor involved in a CHVote election event has its own set of data to be displayed
and speci�c tasks and use cases it has to perform. Most use cases are only available during a
particular phase.

� Election Overview: the election overview shows what phase the chosen election event
is currently in. Additionally, a graphical schema shows how all the actors are connected
and who is involved in the current phase.

� Election Administrator View: the view of the election administrator allows a user to
set-up an election event by con�guring the number of voters, the elections including the
candidates and the number of selections per election. Instead of providing this information
every time an election event is set up, previously de�ned election presets can be applied
or the parameters can be generated randomly.

The election administrator view is also the place where the elections can be tallied and
the �nal result is determined during the post-election phase.

� Printing Authority View: in the printing authority view, the voting cards can be
printed and displayed for every voter. Additionally, the voting cards can be sent to the
voters.

� Election Authority View: the election authority view �rst lets a user choose one

Page 19 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

New elec�on created

New

Elec�on is set up and electorate data generated

Prin�ng

Votecards have been printed

Delivery

Elec�on

Mixing

All authori�es are done mixing the encryp�ons

Decryp�on

All authori�es have decrypted the encryp�ons

Tallying

Votecards have been delivered to all voters

Finished

Vote Cas�ng

Voter casted
a vote

Confirma�on

Voter confirmed
his vote

Finaliza�on

Administrator started postelec�on phase

Administrator has tallied and published the result

Figure 4.1: An election event consists of 7 di�erent phases (green). During the election phase
a voter can be in 3 di�erent phases (blue)

Figure 4.2: The election overview guides the user through the several phases of an election event
and indicates which phases have been �nished and what the next steps are.

Page 20 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

of the three election authorities he wants to observe. On the top, new tasks will pop
up whenever an election authority needs to perform a speci�c task, such as ballot or
con�rmation checking or mixing and decryption.

Additionally, the view shows the data that an election authority knows. This concept of
dividing a view into tasks and data can be seen in �gure 4.3 and has been used throughout
the application in almost every view.

� Voter View: in the voter view, the vote casting process can be done for every voter
that has been previously generated. The view displays both a voting form on the left
and the voter's voting card on the right side. Two sensitive codes are hidden behind a
scratchcard and can be copied to the voting card input by clicking on them after they
have been revealed.

� Bulletin Board View: the bulletin board view always shows all the data that has been
appended to the bulletin board by the other actors, such as the pre-election data, the
ballots that the voters have cast, as well as all the proofs generated during the post-
election phase.

� Veri�er View: the view of the veri�er becomes visible after the election result has been
published to the bulletin board and the election event has reached its �nal stage. By
clicking on the verify button, several checks are executed and the result is displayed on
the page.

All the views are accessible from a tab view displayed on the top of the page which serves as
the standard means of navigation, see �gure 4.4.

Based on the use cases, we tried to �gure out all commonalities between the views: the views
typically display the information known by the respective actor. Especially the bulletin board
and election authorities could contain lots of information to be displayed. Most of the views
have distinct tasks to be executed by the respective actor, such as casting a ballot in the voter's
view or con�rming ballots from an election authorities view.

The content that a view displays, or in other words, the functionality an actor has access to,
depends on the phase the election event is currently in: during the pre-election phase the vote
administrator needs to be able to set up the election, while in the tallying phase he must be
able to tally and determine the �nal result.

4.2 Design

Given the rather large amount of complex data to be displayed, the main challenge of the
project has been a well designed user interface which would allow to display all important
information while maintaining a clear overview.

To achieve this goal we tried to keep our design very minimalistic and follow the Google mate-
rial design guidelines as much as possible by choosing an appropriate UI component framework.

Page 21 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Figure 4.3: The election authority view as an example of how the pages are generally structured:
most views are divided into a tasks part which allows to perform the tasks of an
actor, and a data part which shows what information about an election event the
participant is in possession of.

Figure 4.4: The tab beyond the page header is the main control for navigating through the dif-
ferent pages. It also indicates where some interaction is required next by displaying
an exclamation mark icon in the respective actor's tab.

Page 22 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Even though mobile compatibility was not a requirement, it was nevertheless our goal to make
the layout as responsive as possible such that it could at least be used from a mobile phone,
even though it was clearly optimized for desktop resolution.

Throughout the application we tried to establish common concepts regarding the look and
feel and on how to display our data. Figure 4.5 shows the consistency between our views in
terms of the design and structure. One popular layout-concept of the Google material guidelines
is the card layout. Cards can be easily integrated in a responsive grid system, look modern
and allow to visually group data. In addition, we used pushover menus, tool-tips and pop-ups
as they made it possible to hide less relevant information by default and display it only on
demand of the user.

Before starting with the implementation of our application, we created mock-ups for most
of the views to discuss our ideas with our supervisors and incorporated their feedback as well.
The following screenshots are an extract of the mock-ups in which we tried to visualize how we
imagined the resulting application would look like during the conceptual phase.

Our conceptual work also involved developing a small prototype / proof of concept, in which
we implemented one use case in a reduced extent with the envisaged frameworks and technolo-
gies to evaluate the technical feasibility. The next chapter covers in detail the languages and
frameworks used in the project.

Page 23 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Figure 4.5: Three views of our front-end, showing the consistent design and structure of our
views

Page 24 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

5 Technical Implementation

This chapter describes the application implementation. The �rst part gives an overview of
the architecture from a high-level perspective with each component being a black-box. Later
sections of this chapter describe the internals of every component in detail.

The application has been implemented following a "single page application (SPA)" architec-
ture. Some reasons which led to this decision:

� Due to our personal interest in JavaScript and our intention to improve our knowledge of
this language, we wanted a signi�cant part of the development to be done client-side.

� We imagined the state handling to be easier with an SPA than having to pass around
cookies and session data between every request.

� An SPA seemed to be the right tool for building modern looking, intuitive and responsive
user interfaces.

From a high level perspective and following the SPA architecture, the application can be
divided into 3 main components, as shown in �gure 5.1:

Front-end

WebApp

Back-end

REST API

VoteService

DataSyncService

Crypto-Library

CHVote

Figure 5.1: From a high level perspective, our application consists of 3 main components: the
front-end (web-application), the back-end, and the crypto-library.

� The front-end is where all the functionality of the back-end is consumed and where a
typical CHVote election event is visualized for the users. It is therefore the most important
component of the application. The back-end is developed in response to the front-end
requirements.

Page 25 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

� The back-end consists of several components which use the CHVote crypto-library for
building an actual e-voting ecosystem and providing an API to manipulate the data as well
as a data-synchronization service to push the data from the back-end to the web-clients.
All the sub-components of the backend run on a single server.

� The CHVote crypto-library is the result of our "Project 2" course project which we
have �nished before our bachelor thesis. This library contains all the algorithms speci�ed
as pseudocode in the speci�cation document.

5.1 Technology & Language Decisions

During the CHVote crypto-library implementation we evaluated di�erent programming lan-
guages and decided to use Python. Since Java has already been used by the team in Geneva,
the use of a di�erent language would additionally prove that the CHVote speci�cation can be
implemented regardless of the programming language. Python seemed like a rather suitable
language for the project due to the following reasons:

� python is a mature language with a lot of libraries;

� python allows programs to be written in a compact and readable style, for example by
supporting tuples;

� the protocol was not completely speci�ed at that point and had still been undergoing
some changes, we wanted to use a language in which we could adapt changes quickly and
easily;

� native support for large integers (BigInts) and bindings for the GMP1 library;

� supports a lot of platforms;

� many popular web development frameworks are available.

Throughout the project not all of the reasons above turned out to be true or ideal. The
drawbacks that we have experienced during the implementation of this project will be discussed
in section 5.6.2.

Since the project was implemented with the crypto-library in the back-end, Python was also
the obvious language for the whole back-end. Python o�ers a wide variety of frameworks for
building web-services. Since we planned on building a single-page-application for the client,
we chose the lightweight micro-framework �ask for building a restful web-service and the data
synchronization service.

For the front-end web application we evaluated several single-page application frameworks.
VueJS is a new, modern and lightweight SPA framework that in contrast to Angular has a much

1GMP is a free library for arbitrary precision arithmetic, operating on signed integers, rational numbers, and
�oating-point numbers, see https://gmplib.org/.

Page 26 of 65

https://gmplib.org/

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

�atter learning curve but still o�ers all the functionality that we need. The VueJS add-on Vuex
enabled us to establish a data-store pattern in our front-end, which made it possible to have
a copy of the back-end data-store in our web application which was synchronized in real-time
through web-sockets.

Socket.io simpli�es the usage of web-sockets and o�ers fallback technologies such as long-
polling in case web-socket is not supported by either the browser or the web-server. Both Flask
as well as VueJS have plug-ins that support and integrate socket.io.

For persisting the state of an election, we decided to use mongoDB. The reason behind this
choice will be described in more detail later on.

5.2 Architecture

The core of the application is the VoteService component in the back-end which implements
the e-voting protocol by utilizing all algorithms of the CHVote crypto-library according to the
CHVote speci�cation. The VoteService component internally holds the state of a whole CHVote
election event and exposes functions to manipulate this state at a granularity required by our
web application to implement all use cases. For example: the VoteService contains a list of
ballots and exposes functions to cast a new ballot, which will generate a new ballot according
to the protocol, by calling the CHVote crypto-library, and then adds the ballot to the list.

On top of the VoteService we have implemented a REST service that acts as a facade to the
VoteService component and makes its functionality available as an API to our web-clients. The
REST service also initializes the VoteService by loading and persisting its state from and to
the database between each API call, since each API call is stateless.

One of the requirements is that all clients must be informed in real-time about mutations of
the election state made by other participants. To achieve this, a data sync service has been
implemented which allows pushing the state of an election event to the web-clients by using
the WebSocket protocol. This service is triggered by the REST service after every API call to
push the delta between the old and the new state to the clients.

To establish a proper separation of concerns, the state of the VoteService is always sent to
the client via the data sync service. The REST API only returns success or error codes or
information which is required in response to some particular API call and never state objects.
On the other hand, the data sync service never manipulates the state of the VoteService and
is solely responsible for data synchronization.

From the client's point of view, the web-client contains a copy of the whole VoteService state
in a local data-store. This store is initially populated when the user selects an election event.
Whenever the state of this election event changes, the data sync service pushes the new data to
the web-client. The local mutation handler within the web application handles those messages
and writes the new data into the local data-store.

Page 27 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Web-Client

Vue ComponentsRender

Trigger

Back-end

REST API
HTTP(S)

Database

VoteService

Mutate
Trigger ac�ons

Web-Client 2

Web-Client 3

..
.

DataSyncService
websocket

Read

CHVote Crypto-
Library

Mutate

Local
Data-Store

Ac�ons

Muta�ons

Push data to all clients that
are in the same «room»

Figure 5.2: The architecture with the front- and the back-end. Both sides contain a database /
data-store that stores the current state of an election event. Whenever some action
is called on the server side by calling test REST API, the changes are written
to the database and synchronized to all clients over web-sockets. The resulting
manipulations on the local data-store are automatically updated in the user's view
by binding the user controls to the local data-store.

Since the components of the web application pages are bound to the local data-store, all
mutations are automatically displayed to the user. From those pages, the REST API can again
be called, for example to cast a new ballot. The resulting state change would again be pushed
to all clients. The client which performed the API request would additionally receive a success
code or an error message in case of an error over HTTPS.

The architecture with all corresponding components is also shown in �gure 5.2

5.3 Back-End

This section describes the internals of the back-end services.

Page 28 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

5.3.1 VoteService

The VoteService builds a simpli�ed e-voting ecosystem which provides functionality to conduct
an election event by internally representing the state of a whole election event. In production,
an e-voting system based on the CHVote speci�cation would consist of multiple separate ap-
plications/services for each participant, such as a bulletin-board service for appending data to
the public board or services for each election authority for performing their tasks. Additionally,
several steps of the protocol would have to be executed on the client-side, such as generation
of voter's ballots. In this application, it was reasonable to have the protocol functionality of all
these parties combined within a single service.

We have decided on this VoteService centric approach mainly because we wanted to keep the
whole protocol implementation within the central component and to avoid having protocol logic
both on the client as well as on the back-end. The advantage of this approach is that in case the
protocol undergoes any changes or if the application should be extended to support a di�erent
e-voting protocol in future, only the VoteService component (and of course its dependencies
such as the crypto-library) will be a�ected or must be replaced. It also allowed us to implement
the CHVote protocol almost identically as described in the speci�cation. Since the actor's data
and functions could be easily accessed from within our VoteService, passing data from one actor
to another was as simple as setting an object property to some value.

Internally, we divided the VoteService into actors and states, as shown in �gure 5.3: one
actor for every protocol participant, providing the functionality a participant is responsible for,
and a corresponding state-object for every actor, representing the participant's current state
within a given election event.

The distinction between the actors and their states allowed us to easily serialize the state
objects to JSON (a format that can be easily interpreted by the front-end) and made it easy to
load and persist the state from and to the database. This measure was also necessary because of
the way how our data synchronization between the clients and the back-end was implemented:
By comparing and determining the di�erences between the state object before and after some
VoteService actions, we can automatically �nd out the mutations that have been done to the
state objects using the JSON Patch standard and generate operations to patch the client's local
data-store in the same way. More about this technology can be found in the section 5.3.2.

The only common functionality between every state object is the ability to serialize the object
to a JSON string. For this reason we had to write a custom transformer which tells the JSON
parser how to serialize data-types such as mpz, byte arrays and custom classes. Luckily, python
o�ers a way to easily serialize any custom object. By calling object.__dict__ we can convert
an object into a dictionary, as long as the transformer is able to serialize all properties of the
object.

The following list shows all the state classes, �gure 5.4 shows an UML representation:

� BulletinBoardState: holds all data that is publicly available on the bulletin board (the
number of candidates, the tallied result).

Page 29 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

VoteService

Elec�onAuthority1

Elec�onAuthority1
State

Elec�onAuthority2

Elec�onAutority2
State

Elec�onAuthority3

Elec�onAuthority3
State

Elec�onAdministrator

Elec�onAdministrator
State

Prin�ngAuthority

Prin�ngAuthority
State

Bulle�nBoard

Bulle�nBoard
State

Voter1

Voter1
State

Voter2

Voter2
State

Voter3

Voter3
State

Voter4

Voter4
State

Voter5

Voter5
State

Database

Figure 5.3: The internals of the VoteService: the functionality is divided into actor and state
classes. The actors provide the functionality as described in the speci�cation and
by utilizing the crypto-library. The state is contained within the state classes that
allow easy serialization both for persisting them to the database as well as to a
JSON representation for the data synchronization.

Page 30 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Abstract Class

State

toJSON()

Bulle�nBoardState

elec�onID
securityLevel
voters
elec�onTitles
coun�ngCircles
candidates
numberOfCandidates
numberOfSelec�ons
numberOfParallelElec�ons
eligibilityMatrix
par�alPublicVo�ngCreden�
al
ballots
confirma�ons
publicKeyShares
publicKey
encryp�ons
shuffleProofs
decryp�ons
decryp�onProofs
verificaitonResult

Elec�onAuthorityState

id
name
autoMode
par�alSecretVo�ngCreden�als
par�alPublicVo�ngCreden�als
points
publicVo�ngCreden�als
secretKeyShare
publicKeyShare
publicKey
checkBallotTasks
ballots
checkConfirma�onTasks
confirma�ons
encryp�ons
permuta�on
encryp�onsShuffled

VoterState

id
name
vo�ngCard
status
coun�ngCircle
selec�on
randomiza�ons
validBallot
invalidBallot
invalidConfirma�on
points
verifica�onCodes
finaliza�ons
finaliza�onCodes
vo�ngCodeRevealed
confirma�onCodeReve
aled

Prin�ngAuthorityState

privateCreden�als
vo�ngCards

Elec�onAdministratorState

votes
coun�ngCircleResults
finalResult

Figure 5.4: The state of an election event is broken down into separate state classes for every
participating actor. The thing they have in common is that they are serializable to
JSON.

� ElectionAuthorityState: holds all data that an election authority knows (e.g. the list
of ballots, the secret key of an election authority).

� VoterState: since there is no distinction made between a voter and a voting client in the
application, the VoterState contains the data of both the voter (e.g. the voting card) and
the data typically known to the voting client (e.g. the points returned by the oblivious
transfer).

� PrintingAuthorityState: holds the data known to the printing authority (e.g. the list
of all voters private credentials and the voting cards).

� ElectionAdministratorState: holds all the data known to the election administrator.

Since our application supports multiple users working on di�erent election events concur-
rently, the state of an election event cannot be kept in volatile memory, but needs to be
persisted between every single request. For this reason di�erent database systems and concepts
were evaluated. We decided against a relational database system which would require a de�-
nition of a database schema since we wanted our state objects to be the only place where the
schema would be de�ned. This "code-�rst" approach would make it easier to apply changes to
the protocol in future.

For this purpose, MongoDB seemed like a good choice. Since there is no need to access and

Page 31 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Figure 5.5: Example of a MongoDB collection (the equivalence of tables in other database
systems). All states are stored as binary strings together with an identi�er for the
election-event as well as the election authority ID.

�lter our data by arbitrary queries but only being able to save and load a state object of a
particular election, the whole state is stored as a binary string in a MongoDB collection. The
only additional attribute which is saved in the database alongside with the serialized state is the
electionId which denotes which election event a particular state belongs to. An election contains
multiple VoterStates and ElectionAuthorityStates. Therefore, these two states additionally
require an electionAuthorityId and a voterId.

We described how the state classes are used to divide the data of the VoteService into smaller
units. Similarly, the functionality of the VoteService is separated into classes, one for every actor
of the protocol.

The common functionality, for example functions for loading the corresponding states from
the database and one for persisting the states to the database, are contained in an abstract
base class.

Page 32 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Voter

<ge�ers/se�ers for state>
castVote()
confirmVote()

Prin�ngAuthority

<ge�ers/se�ers for state>
printVo�ngCards()

Bulle�nBoard

<ge�ers/se�ers for state>
getBallotByID(id)
getConfirma�onByID(id)

Abstract class

Actor

mongoCollec�onName
elec�onId
additonalCondi�ons
state
loadState()
getJSONPatch()
getState()
persist()

Elec�onAdmin

<ge�ers/se�ers for state>
setupElec�on()
tally()

Elec�onAuthority

<ge�ers/se�ers for state>
getPublicCreden�als()
genElectorateData()
genKey()
getPublicKey()
checkBallot()
respond()
discardBallot()
checkConfirma�on()
discardConfirma�on()
finalize()
getEncryp�ons()
mix()
decrypt()

Figure 5.6: The functionality of the VoteService is divided into separate classes, one for each
participating actor of the protocol.

5.3.2 Data-Sync Service

One of the big challenges of our application has been the synchronization of an election event's
state between the back-end and the client's local data-store. As mentioned earlier, the web-
application contains a local data-store, which is structured the same way as the states of the
VoteService. As per our requirements, we wanted to achieve real-time data synchronization
such that every web client observing a particular election event is informed of any changes of
this election event's state. For this purpose we used web-sockets which - opposed to the HTTP
protocol - make it possible to inform a web-client without having to rely on polling.

For the data synchronization we had to keep an eye on the performance of the data transfers
since some state objects, especially the bulletin board and the election authority states, could
grow big in size when they contained many ballots. We observed that the size of the whole
state of an election event with 6 candidates and 10 voters, of which each had submitted at
least one ballot and a con�rmation, could easily reach 1 megabytes already. Admittedly, we did
not notice any performance issues even with rather large election events. However, transferring
the whole state of an election event after every single mutation did not seem like a proper
solution.

When a client connects to the data sync service for the �rst time, it needs to get the full JSON
representation of every state object of the VoteService. For this purpose we have implemented
a "FullSync" method which populates the clients local data-store with the full state of an
election.

Page 33 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Web-Client (App)

Bulle�nBoardStore

Elec�onAdministratorStore

Prin�ngAuthorityStore

Prin�ngAuthorityStore

Elec�onAuthorityStore

VoterStore

Back-end (VoteService)

Bulle�nBoardState

Elec�onAdministratorState

Prin�ngAuthorityState

Prin�ngAuthorityState

VoterStateVoterStateVoterState

Elec�onAuthorityStateElec�onAuthorityStateElec�onAuthorityState

JSON

JSON

JSON

JSON

JSON

JSON

Figure 5.7: For every VoteService state there is a corresponding data-store on the client side.
The client side data-store are initially populated with the whole dataset during the
initial loading procedure of an election event.

After a client has populated its local data-store, future manipulations on the back-end are
synchronized using the so called JSON Patch operations, which only contain the delta between
the previous and the current state.

JSON Patch is a data structure for describing how to patch / modify a JSON object. The
procedure is standardized and described in the RFC 6902 of the Internet Engineering Task
Force (IETF). There exist JSON Patch implementations for many languages, including Python
and JavaScript. We used JSON Patch to implement our incremental data synchronization as
follows:

When the VoteService loads the state of its actor objects, it sets the originalState prop-
erty of the actor to a deep copy of its state object. Mutations are always done only to the
state property. Before calling the persist() method on an actor object, we use the Python
JSON Patch library to determine the di�erences between the state and the originalState to
�nd out if and what variables have changed within the states. As a result, we receive a set of
JSON Patch operations which describe how the originalState could be patched, such that it
becomes identical to the manipulated state object by calling
make_patch(json.loads(self.originalState.toJSON()), json.loads(self.state.toJSON()))

The result is an array of operations in JSON format that contains:

� the path of the manipulation;

� the type of operation (replace, add, remove, ...);

� the new value (if required).

Page 34 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Figure 5.8: JSON Patch is an RFC standard that describes a procedure to incrementally patch
a JSON object. By comparing two JSON objects, JSON Patch creates a set of
operations that are needed to patch one object to match the other. We used JSON
Patch to keep the client side data-stores in sync with the central database. The
picture shows the resulting operations after submitting a new ballot.

For example: After casting a ballot, we might receive the following JSON Patch:

These JSON Patches are pushed to all the clients that need to receive the mutations and
are applied to the local data-store which (under normal circumstances) contains the original
state. After applying the JSON Patch, the data-store of all clients contains the same state of
an election event as the back-end.

If for some reason a web-client does not receive a JSON Patch, its local data-store will no
longer correspond to the back-end's version. This might happen because of network issues and
an interrupted WebSocket connection or if applying the JSON Patch operations failed.

For this reason we have applied a data-store revision-number for every election event, which is
incremented whenever some state is manipulated and persisted on the back-end. This revision
number is sent alongside the JSON Patches to the clients and is also stored on the client side.

Page 35 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Web-Client (App)

Bulle�nBoardStore

Elec�onAdministratorStore

Prin�ngAuthorityStore

Prin�ngAuthorityStore

Elec�onAuthorityStore

VoterStore

Back-end (VoteService)

Bulle�nBoardState

Elec�onAdministratorState

Prin�ngAuthorityState

Prin�ngAuthorityState

VoterStateVoterStateVoterState

Elec�onAuthorityStateElec�onAuthorityStateElec�onAuthorityState

JSON patch

JSON patch

Figure 5.9: After the client side data-stores have been initially loaded, future mutations of the
central database are synchronized to all clients by receiving and applying JSON
Patches, which contain operations to patch the local data-stores to be in sync with
the back-end.

Before applying the JSON Patches, the client checks if its local data-store's revision number
is exactly 1 version behind the server's data-store revision, which normally will be the case.
If the client detects that its revision number is 2 or more versions behind the server's, it will
request a full-data synchronization over the DataSyncService to avoid out-dated, corrupted
local data-stores.

During development we ran into an issue with the python JSON Patch library "python-json-
patch v1.16" that we have been using. During some special cases the generation of JSON
Patches failed and resulted in an exception when comparing objects where mutations were
made to arrays within dictionaries - a combination which often occured in our data structures.
After hours of debugging and analyzing the issue, we �gured out a temporary workaround and
reported the issue 2 to the developers of this library. A few days later a new version v1.20 of
the library was released which �xed our issue.

5.3.3 REST API

The third component of the back-end is the REST API. Its responsibilities are to provide all
the functionality of the VoteService to the web clients and trigger the data synchronization of
the DataSyncService. Every function required by the front-end, such as castVote(), has a
corresponding endpoint in the REST API service.

2https://github.com/stefankoegl/python-json-patch/issues/74

Page 36 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

@main.route('/castVote', methods=['POST'])
@cross_origin(origin='*')
def castVote():

data = request.json
electionId = data["election"]
selection = data["selection"]
voterId = data["voterId"]
votingCode = data["votingCode"]

if len(selection) == 0:
return make_error(400, "Empty selection")

try:
svc = VoteService(electionId) # prepare VoteService

svc.castVote(voterId, selection, votingCode) # perform vote casting

patches = svc.persist() # persist modified state and retrieve JSON Patches

syncPatches(electionId, SyncType.ROOM, patches) # send the JSON Patches to all
clients↪→

except Exception as ex:
return make_error(500, str(ex))

return json.dumps({'result': 'success'})

The API can be reached by sending a HTTP(S) POST request to our web server hosting the
back-end services. The URL de�nes the function to be executed. for example: a POST request
to https://<server>:5000/castVote/ would call the above function. The required parameters
are provided in the POST body.

Step one: parameters are extracted from the POST request and validated if necessary. Step
two: a VoteService object is instantiated by passing the electionId to the constructor. The
VoteService will internally load the states of the corresponding election event from the database
and instantiate the actor objects such as the election authorities.

Now the VoteService can execute the function which the user intended to call, for example
"CastVote". By calling the function persist(), the new state is written to the database and
the JSON Patches of all mutations caused by the "CastVote" function call are determined,
returned and can be sent to all clients with the help of the DataSyncService.

The sequence diagram in �gure 5.10 shows how the vote casting use case is implemented
within the back-end and how all the components work together. The REST API instantiates
a new VoteService object which itself instantiates the required actor objects by loading their
states from the database. The "castVote" function then performs the required steps to create
a new ballot and ballotCheckTask for this particular election authority. After persisting the
changes to the database, the returned JSON Patch operations are transmitted to the clients by
passing them to the DataSyncService.

The diagram is simpli�ed and reduced to the election authority as the only actor; in reality
the bulletin board and the voter are also involved in this use case but behave the exact same
way as the election authority.

Page 37 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

REST APIVoter

Cast vote (v,s,X)

VoteService

init ()

voteService

castVote(v,s,X)

JSON patches

Crypto-Library

GenBallot(X, s, PK, securityParams)

ballot, randomiza�ons

Elec�onAuthority

create ballotCheckTask

ok / error

ballotCheckTask

Database

Load previous state

state

init ()

elec�onAuthority

save state to DB

ok / error

persist()

JSON patches

DataSyncService

syncPatches

JSON patches

ok / error

persist()

Figure 5.10: Vote casting sequence diagram, showing how all components of the application are
working together during vote casting

5.4 Crypto-Library

5.4.1 File Structure

We decided to put every algorithm of the speci�cation in its own �le together with related unit
tests. The �les are structured according to the actors of the protocol, for example:

� Common: contains common cryptographic algorithms and the security parameters used
by multiple algorithms.

� ElectionAuthority: contains all the algorithms used by the election authority.

� PrintingAuthority: contains all the algorithms used by the printing authority.

� VotingClient: contains all the algorithms used by the voting client.

� ElectionAdministration: contains all the algorithms used by the election administra-
tor.

Page 38 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

� Utils: contains helper classes and miscellaneous utility functions.

5.4.2 Public Parameters

There exist two types of public parameters:

The security relevant parameters, e.g:

� the order of the prime groups: p, ′p, p̂;

� the length of the voting, con�rmation, veri�cation and �nalization codes;

� the number of authorities: s;

and public election parameters, e.g.:

� the size of the electorate: NE;

� the number of candidates: n;

� the list of candidate descriptions: c.

The security parameters are typically used within the algorithms and remain unchanged for
a longer time period, whereas the public election parameters are di�erent for every election
event.

The object SecurityParams holds all security relevant parameters and is injected as an
additional function argument to all algorithms. Several di�erent SecurityParams objects are
created initially, which contain all the parameters according to the recommendations in the
CHVote speci�cation document ("level 0" for testing purposes and "level 1" through "level 3"
for productive use). For simple unit and debugging purposes, we can inject the "level 0" object
while in production level 1 - 3 are used.

The public election parameters, on the other hand, are directly passed to the algorithms by
the calling party. If an algorithm needs to know certain election parameters (like the size of
the electorate NE), these values are typically derived from vectors that they have access to, so
they do not require speci�c knowledge of these parameters.

5.4.3 Coding Style

The following source code sample shows a typical implementation of an algorithm (in this
example, algorithm 7.18 according to the CHVote speci�cation).

import gmpy2
from Utils.Utils import *
from Crypto.SecurityParams import *

Page 39 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

from VotingClient.GetSelectedPrimes import GetSelectedPrimes
from VotingClient.GenQuery import GenQuery
from VotingClient.GenBallotProof import GenBallotProof
from Types import Ballot

def GenBallot(X_bold, s, pk, secparams):
"""
Algorithm 7.18: Generates a ballot based on the selection s and the voting code X.
The↪→
ballot includes an OT query a and a proof pi. The algorithm also returns the random
values used to generate the OT query. These random values are required in Alg. 7.27
to derive the transferred messages from the OT response, generated by Alg. 7.25.

Args:
X_bold (str): Voting Code X ∈ A_X^l_X
s (list of int): Selection s = (s_1, ... , s_k)
pk (mpz): ElGamal key pk ∈ G_p \ {1}
secparams (SecurityParams): Collection of public security parameters

Returns:
tuple: alpha = (r, Ballot) = (r, (x_hat, a, b, pi))

"""
AssertMpz(pk)
AssertList(s)
AssertClass(secparams, SecurityParams)

x = mpz(StringToInteger(X_bold, secparams.A_X))
x_hat = gmpy2.powmod(secparams.g_hat, x, secparams.p_hat)

q_bold = GetSelectedPrimes(s, secparams) # q = (q_1, ... , q_k)
m = mpz(1)

for i in range(len(q_bold)):
m = m * q_bold[i]

if m >= secparams.p:
return None

(a_bold, r_bold) = GenQuery(q_bold, pk, secparams)
a = mpz(1)
r = mpz(0)

for i in range(len(a_bold)):
a = (a * a_bold[i]) % secparams.p
r = (r + r_bold[i]) % secparams.q

b = gmpy2.powmod(secparams.g,r, secparams.p)
pi = GenBallotProof(x,m,r,x_hat,a,b,pk, secparams)
alpha = Ballot(x_hat,a_bold,b,pi)

return (alpha, r_bold)

class GenBallotTest(unittest.TestCase):
def testGenBallot(self):

selection = [1,4] # select candidates with indices 1,4
(ballot, r) = GenBallot(unittestparams.X, selection, unittestparams.pk,

secparams_l0)↪→
print(ballot)
print(r)

if __name__ == '__main__':
unittest.main()

All algorithms contain a short description, which was taken as is from the speci�cation

Page 40 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

document, as well as a comment (Google-style documentation string), which can be used to
automatically generate code documentation. The algorithm itself has been implemented as
close to the speci�cation as possible, using the same variable names and (as far as the language
supports it) similar control structures:

� the su�x _bold for emphasized (bold) variables, e.g. p_bold for p;

� the su�x _hat for variables with a hat, e.g. a_hat for â;

� the su�x _prime for variables with a prime, e.g. a_prime for a′;

� etc.

Each �le also contains unit tests of the speci�c algorithm (if unit testing was considered
useful for the particular algorithm).

The following example shows the similarities between the algorithm pseudo code and the
actual implementation in Python:

x = mpz(StringToInteger(X_bold, secparams.A_X))

x_hat = gmpy2.powmod(secparams.g_hat, x, secparams.p_hat)

q_bold = GetSelectedPrimes(s, secparams)

m = mpz(1)

for i in range(len(q_bold)):

m = m * q_bold[i]

if m >= secparams.p:

return None

(a_bold, r_bold) = GenQuery(q_bold, pk, secparams)

a = mpz(1)

r = mpz(0)

for i in range(len(a_bold)):

a = (a * a_bold[i]) % secparams.p

r = (r + r_bold[i]) % secparams.q

b = gmpy2.powmod(secparams.g,r, secparams.p)

pi = GenBallotProof(x,m,r,x_hat,a,b,pk, secparams)

alpha = Ballot(x_hat,a_bold,b,pi)

return (alpha, r_bold)

5.4.4 Return Types

In most cases, when an algorithm returns more than a scalar datatype, tuples are used. Tuples
allow returning multiple values from a function:

def foo():
return (1, 2)

def main():
a, b = foo()

Page 41 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

This way large parts of the source code looked very similar to the pseudo code in the CHVote
speci�cation. For more complex data types or return values that were used more than once,
named tuples were applied. The data type "namedtuple" is like a lightweight class and allows
access to named properties.

Ballot = namedtuple("Ballot", "x_hat, a_bold, b, pi")

def main():
Ballot b = getBallot()
x_hat = b.x_hat

By following this approach we could avoid having lots of container classes only used to pass
data structures between the algorithms.

5.5 Front-End

The front-end was the most important component of the project, since we put focus mostly on
the visualization and less on the actual e-voting system. Displaying the rather large amount
of voting speci�c data and large numbers (>= 1024 bit) required a clean and well-structured
layout and a modular component design. Luckily, the framework we had chosen, VueJS, did
very well in supporting us to meet exactly those requirements. We tried to follow the design
patterns and best practices proposed by the developers of VueJS wherever possible.

This section describes which concepts of VueJS we used and how we adapted them to our
needs.

5.5.1 Components

Components are the basic building blocks of the VueJS framework. The application itself is a
component, every page of the application is a component and the pages typically contain lots
of components, one for every object like form controls, buttons or custom controls such as the
ballot-list, etc. The concept of components encourages to create reusable modules, provides a
way to structure the application into smaller units and makes the resulting HTML template
more expressive and easier to read.

We have created our own VueJS components for every control that we used more than once.
For example, the ballot list that is shown in the bulletin board view as well as in the election
authority view, the labels for displaying truncated large numbers or the cards used as our
standard means for displaying data have all been turned into custom components. One of
the most useful features of VueJS components is the concept of slots. By de�ning one or
multiple slots within a component's template markup, it becomes possible from the parent of
a component to embed content into di�erent locations (slots) within the component's HTML
template.

Page 42 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

We have been using slots to create our card component, which can display information either
as the main content of the card or within the expandable area on the bottom of the card:

<DataCard title="Foo" :expandable=true>
Just some text
<p slot="expandContent">More complex content <BigIntLabel

:mpzValue="publicKey"></BigIntLabel>↪→
</p>

</DataCard>

The �rst line "Just some text", which gets inserted into the default unnamed slot, could as well
be passed as a string parameter to the data card component. However, as things are getting
more complicated, one might like to place arbitrary HTML or even another VueJS component
inside the expandable content of our data-card. In such cases, component parameters will not
work as they only accept primitive data types. Slots, on the other hand, allow arbitrary content
to be injected. The following code shows how the data-card component is implemented:

Figure 5.11: Our data-card component that allows content to be injected in di�erent places
within its DOM by using the slot-concept of VueJS.

<template>
<v-card class="dataCard">

<ConfidentialityChip v-if=showConfidentiality"' :type="confidentiality"
class="confidentialityChip" />↪→

<v-card-title primary-title class="dataCardTitle">
<div>{{title}}

<v-tooltip top>
<v-icon v-if="!disableTooltip" color="grey lighten-1"

slot="activator">info</v-icon>Programmatic tooltip↪→
</v-tooltip>

</div>
</v-card-title>
<v-card-text class="dataCardContent">

<slot></slot>
</v-card-text>
<v-card-actions v-show="expandable">

<v-btn icon @click.native="showExpander = !showExpander">
<v-icon>{{ !showExpander ? 'keyboard_arrow_down' : 'keyboard_arrow_up'

}}</v-icon>↪→
</v-btn>

</v-card-actions>
<v-slide-y-transition v-show="expandable">

<v-card-text v-show="showExpander">
<slot name="expandContent">

Page 43 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

</slot>
</v-card-text>

</v-slide-y-transition>
</v-card>

</template>
<script>

import { mapState } from 'vuex'

export default {
data: function () {

return {
showExpander: false

}
},
computed: {

...mapState({
showConfidentiality: state => state.showConfidentiality

})
},
props: {

title: {
type: String,
required: true,
default: 'Title'

},
expandable: {

type: Boolean,
required: true,
default: false

},
confidentiality: {

type: String,
required: true,
default: 'public'

},
disableTooltip: {

type: Boolean,
required: false,
default: false

}

},

mounted () {
}

}
</script>

The �rst part within the <template> tag describes the HTML markup as well as the slots
mentioned above.

The <script> tag contains the actual logic of the component, similarly to the controller in
other SPA frameworks. The data object contains variables which are de�ned and valid only
locally within the component. The computed object maps variables from the central data-store
to a local variable which is reactively bound to the data-store. Whenever the value of the given
variable changes in the data-store, the computed property is automatically updated. From the
template, we can access both local data as well as computed properties. Computed properties
can also be used whenever a local variable needs to be formatted or in some way manipulated
before it is displayed in the component's template.

Page 44 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

The third source of data are properties (`props`), which are passed as arguments from the
parent component. They are typically used to de�ne options for a component.

Additionally, components may contain methods, typically used for event-handlers like button
clicks and event hooks like mounted, beforeDestroy, beforeCreated to in�uence the compo-
nent's construction/destruction at di�erent times during a component's lifecycle.

5.5.2 Centralized Data-Store & Flux Pattern

One of the big challenges regarding the front-end architecture was to decide how and where
the data would be stored. Clearly, since we already had divided an election event's data into
one state for every actor and given that every actor also had its corresponding view in our
front-end, simply saving the data to the respective component was our �rst thought. Although
a voter mainly needs to access his own data contained in the voters state, some data must be
shared between multiple components, for example the information on the bulletin board.

Since we wanted to avoid keeping the data redundant in multiple components, we decided
to use the Flux design pattern in our front-end. The basic idea of the �ux pattern is to have a
single, central data source where all the data is stored and is accessible to all components. This
single data source is called a "store" by Flux terminology. VueJS has its own implementation
of the Flux pattern called Vuex. Another important concept is that components can freely
access the data in the store. However, they are not allowed to change the data, at least not
directly. Instead, if a component wants to manipulate data in the store, this has to be done
by calling mutation functions. Forbidding manipulation of the store makes it much easier to
keep track of where mutations came from.

Our web application's data-store is divided into multiple modules, one data-store module
for each corresponding state of the back-end. In reality, all these data-stores are part of one
single data-store, but having multiple modules allows us to structure the mutation and getter-
functions and help to avoid naming con�icts by having separate namespaces for every module.

The data-store can be accessed from any component by de�ning a computed property. If the
computed properties have to perform some formatting, aggregation, �ltering etc. on the state
variables and are used from within multiple components, it is also possible and recommended
to write getter-functions in the data-store to avoid redundancy.

5.5.3 Internationalization (i18n)

All text visible to the user on the front-end of the application is internationalized, i.e. the
display language can be changed at any time by the user. The default language provided is
English and translations for German have been added. The main language, English, and the
manual translations for German are stored in the translations preset YAML �le frontend/src/
translations.preset.yaml. By using the translation script frontend/src/translate.js,
those languages stored in the preset �le can be translated automatically to prede�ned target

Page 45 of 65

frontend/src/translations.preset.yaml
frontend/src/translations.preset.yaml
frontend/src/translate.js

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

languages. Those automatic translations (provided via Google Translate) are stored in the
YAML �le frontend/src/translations.yaml together with the main language and manual
translations. This �le is used to provide translations for the front-end application.

5.5.4 Development Environment

Webpack was chosen as a working environment for the development phase of the project.
Webpack is a module bundler, i.e. a piece of software which generates static assets from
JavaScript libraries including all dependencies, CSS �les, images etc. Additionally, webpack
features a development web server, which aids in fast development. While the development
server is running, any changes in the application's source code are detected and assets are
regenerated on the �y. This way, any changes in the application are directly visible in the
browser.

5.5.5 Staging Environment

In order to deploy the application to an environment for staging purposes, we decided to use
Docker together with Docker Compose. The Docker Compose �le docker-compose.yaml stores
the con�guration for three distinct Docker containers: a MongoDB service, the back-end and
the front-end. By running docker-compose build in the project's root directory, those three
containers can be built. After building the containers, the services can be started by running
docker-compose up. The application will then be available via localhost:8080 (TCP).

5.6 Challenges

This chapter describes some of the challenges encountered during the application develop-
ment.

5.6.1 WebSocket Subscription Concept

Since our application allows multiple election events to exist at the same time, the question
arose how to let only those clients which are observing one speci�c election event receive web-
socket messages related to this particular election event in case an action has been triggered on
the back-end.

There are some similarities between this problem and the one a typical chat with multiple
chat-rooms has: only those users who have actually joined the chat-room should be noti�ed of
the new posts for this chat-room. We have adapted this "chat-room" concept to our case by
de�ning a room to be equal to an election event.

Page 46 of 65

frontend/src/translations.yaml
docker-compose.yaml

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

We can assume that all the pages that actually show data of an election event require the
election event's id to be passed as a part of the URL. For example: /BulletinBoard/1 is the
route to reach the BulletinBoard view of the election with id 1.

Whenever a route is called that contains the argument `electionId`, we need to make sure that
the client has joined the room of this election event. We have therefore set a global variable
called joinedElectionId to match the id of the election event a user has joined. We have
created a VueJS "mixin" (kind of a plug-in) that can be added to each election page, which
makes sure that if the client has not yet joined the corresponding election event's room, it emits
a "join" request to the socket.io server, passing along the electionId:

export default {
created () {

if (this.$store.getters.joinedElectionId !== this.$route.params.electionId) {
this.$socket.emit('join', {election: this.$route.params['electionId']})

}
}

}

On the server side we have de�ned a socket.io listener called "join" which removes the calling
client from every room before joining the room of the requested election event. There is only
one exception: the client cannot leave the room that corresponds to the "sid" of the request,
since this is basically the channel over which the "join" request is handled.

@socketio.on('join')
def on_join(data):

electionID = data['election']
for room in rooms():

if room != request.sid: # do not leave the room
of the current connection↪→
leave_room(room)

join_room(electionID)

syncService.fullSync(electionID, SyncType.SENDER_ONLY) # Perform a full
data-sync↪→

emitToClient('joinAck', electionID, SyncType.SENDER_ONLY) # send an
acknowledgement/confirmation to the client↪→

The joinAck handler in the web application will then set the joinedElectionId variable to
the just joined election id, such that the join will only be called once or until the user chooses
a di�erent election.

5.6.2 Python Issues

During the project we experienced a few issues with Python as the programming language
which we used for the crypto-library and the back-end. In particular, we observed the following
issues:

� Performance issues due to Python being an interpreted language.

Page 47 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

� Function overhead: function calls in Python seem to be very slow, especially when using
recursions (such as recHash).

� Strongly dynamic typing vs. static typing: the Python interpreter needs to inspect every
single object during run time (be it an integer or a more complex object).

� Surprisingly, the BigInteger library turned out to be not as fast as using directly the
GMP library, and using the GMP bindings also meant having an overhead compared to
the native BigIntegers.

As performance was not the main focus of our application, these issues were mostly ignored.

The following issues were more problematic for the project:

� Because of the dynamic typing, the code becomes much more error-prone, as there is no
standard checking of function argument types etc. We have tried to overcome this issue
by using asserts to check the types of input parameters wherever it was useful.

� There are little to no standards regarding the project structure when using our "crypto-
library" approach. Most solutions depend on paths set as environment variables or
absolute imports, which we wanted to avoid. We have chosen to use relative imports
and de�ne the crypto-library as a module, which explains why there are many empty
"`__init__.py"' �les in our solution, which are required for this module-approach.

For detailed information regarding the performance issues that we have experienced see [5]
and [6]. Based on the reasons above we would not recommend using Python for similar or
larger projects. Python is indeed a very handy language to write quick prototypes and proof
of concepts, but issues become more frequent in larger projects.

5.7 Automatic Task Processing for Election Authorities

Every election authority normally has to manually process all incoming tasks such as ballot
checking, con�rmation checking, mixing and decrypting. As it can become cumbersome re-
peating the same steps multiple times during a short presentation, it would seem reasonable to
perform these tasks manually only for the �rst election authority. Thus, we have implemented
an automatic-mode in which an election authority automatically performs all tasks.

There were several di�erent ways to implement this feature. One possibility would be building
a service which runs in the background and regularly checks for new tasks and processes them.
Since each task requires a preceding action (for example: a Ballot-Check-Task requires a voter
casting a vote), and since it was reasonable for our use-cases to assume that the authorities
perform the tasks sequentially, we chose the simplest approach.

When a user casts a ballot and a ballot-check-task is created, we check if the �rst authority is
set to automatic. If yes, the function for checking this ballot is automatically called for the �rst
election authority. This function checks again if the next election authority is set to automatic

Page 48 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

and recursively calls itself if that is the case.

This means that if the �rst authority is in manual mode and the other two are set to au-
tomatic, they both wait with their execution until the �rst election authority has manually
started executing the task. This strict sequential order is only required by the protocol for the
mixing task, all other tasks could be called in any order. If desired, this behavior could also
be implemented with our approach by simply executing the function for every authority with
auto-mode set to true.

5.8 Testing

We have applied di�erent testing concepts for the several components of our application.

The front-end has been tested using manual test-cases. One of the test-cases is shown as
follows, the others can be found in the appendix. We decided not to use automatic end-to-
end or unit testing on our front-end because this would have generated a lot of work both for
learning and integrating the testing frameworks like karma and selenium, and for writing the
actual tests.

For our back-end, we have used automatic unit testing wherever it made sense, especially for
the CHVote algorithms. Most basic algorithms which were used within other algorithms, such
as hashing, prime number generation etc., have unit-tests provided within the same �le. More
complex algorithms are not tested with unit-tests, especially when they require input generated
by other algorithms. Algorithms like genShu�eProof and checkShu�eProof are tested by our
voteSimulation test. If a shu�eProof can be generated and is recognized as a valid proof by
checkShu�eProof and passes all internal asserts, we assume that it is working properly.

Additionally, we have used asserts a lot in our backend to compensate for the missing of
static typing of the Python programming language and to make sure that both the input as
well as the output of the algorithms are correct in terms of boundaries, dimensions, etc.

Page 49 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Table 5.1: Test Case �Pre-Election�

Test-Case 1. Pre-Election
Description This test covers all the pre-election steps, including the creation of a new

election, setting it up from the election administration view and the printing-
and delivery of the voting cards

Precondition
Postcondition

� The election event is in the status "Election"
� The voters have received a voting card

Steps
1. Start the application
2. Choose "Election Events" from the main menu
3. Click on "Create new election event"
4. Enter a name for the election event, choose a security level and

click on "create"
5. The "Election Admin" tab should now have an interaction noti�-

cation
6. Visit the "Election Admin" view
7. Enter at least 3 for the number of voters, at least 3 di�erent candi-

dates and 1 for the number of selection and click on "Setup Election
Event"

8. The "Printing Authority" tab should now have an interaction no-
ti�cation

9. Visit the "Printing Authority" view
10. Click on "Print Voting Cards"
11. The voting cards for all voters should now be displayed
12. Click on "Deliver Voting Cards To Voters"
13. The voting cards should now disappear and the "Voters" tab should

now have an interaction noti�cation
14. Visit the Voters view, select a voter and check that the voting card

is displayed correctly

Page 50 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

6 Conclusion

The new CHVote speci�cations seem like a real breakthrough in e-voting. Many of the technical
limitations which prevented the current systems like the one of Geneva from being used as a
large scale e-voting platform, can now be solved. However, e-voting must ultimately be approved
both in politics as well as by the Swiss citizens. The complexity and cryptographic nature of
e-voting makes it di�cult for ordinary citizens to fully understand why and how this protocol
works. The missing of knowledge might even result in mistrust towards e-voting. Even though
the protocol is very complicated, our application allows users to gain a better understanding
of e-voting by visualizing the internals of Geneva's next generation e-voting protocol. An
application like ours might not be enough to reach vast majority of the population and change
their opinion about e-voting. However, the authors of the CHVote speci�cations intend to use
our application for future presentations of their protocol, which might positively in�uence the
attitude of their audience.

Finally, we would like to re�ect on some aspects of our bachelor thesis: especially in the
beginning of the project, we have underestimated the amount of work required for working
out goals and a concept for the architecture and user interface. Regular meetings with our
supervisors and the agile project methodology using prototyping and mockups helped a lot to
create a common understanding and a concept for our application.

With all the envisaged technologies and frameworks being relatively new and without prior
knowledge and experience using them, we were unsure whether we chose the right tools and if
we would succeed with our concept. However, especially Vue.js turned out to be the perfect
framework for developing the front-end of the application. It allowed us to rapidly develop
an intuitive user-interface. Even though the framework is relatively new and lightweight, we
haven't been missing any functionalities or libraries. As for the back-end, we still believe that
Python isn't the best language for implementing cryptographic protocols for the reasons we
mentioned in section 5.6.2. However, these problems did not hinder us from meeting all the
requirements, including the optional can-criteria.

Especially during the �rst implementation phase, we were able to follow the time schedule
as planned. In the second phase, we have changed the order of some of the planned features
because some features required less, and some more time than we expected.

Implementing the e-voting protocol turned out to be a very enriching experience through
discovering new programming languages, building up know-how in cryptography as well as
deep-diving into the technology behind the e-voting protocol. This project enabled us to get a
better insight into how electronic voting could look like in a few years and even contribute a
small part to its future development.

Page 51 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Page 52 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Declaration of Authorship

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Erklärung der Diplomandinnen und Diplomanden
Déclaration des diplômant-e-s

Selbständige Arbeit / Travail autonome

Ich bestätige mit meiner Unterschrift, dass ich meine vorliegende Bachelor-Thesis selbständig durch-
geführt habe. Alle Informationsquellen (Fachliteratur, Besprechungen mit Fachleuten, usw.) und ande-
ren Hilfsmittel, die wesentlich zu meiner Arbeit beigetragen haben, sind in meinem Arbeitsbericht im
Anhang vollständig aufgeführt. Sämtliche Inhalte, die nicht von mir stammen, sind mit dem genauen
Hinweis auf ihre Quelle gekennzeichnet.

Par ma signature, je confirme avoir effectué ma présente thèse de bachelor de manière autonome.
Toutes les sources d’information (littérature spécialisée, discussions avec spécialistes etc.) et autres
ressources qui m’ont fortement aidé­e dans mon travail sont intégralement mentionnées dans
l’annexe de ma thèse. Tous les contenus non rédigés par mes soins sont dûment référencés avec
indication précise de leur provenance.

Name/Nom, Vorname/Prénom ………………………………………………

Datum/Date ………………………………………………

Unterschrift/Signature ………………………………………………

Dieses Formular ist dem Bericht zur Bachelor-Thesis beizulegen.
Ce formulaire doit être joint au rapport de la thèse de bachelor.

Page 53 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Bibliography

[1] "CHVote System Speci�cation", by Rolf Haenni, Reto E. Koenig, Philipp Locher and
Eric Dubuis, October 31, 2017, https://eprint.iacr.org/2017/325

[2] "Anforderungskatalog für eidgenössische Volksabstimmungen mit der elektronischen
Stimmabgabe", by Bundeskanzlei BK, June 07.2014.

[3] "ASO Factsheet E-Voting", by Auslandschweizer-Organisation, http://aso.ch/files/
webcontent/direction/Factsheets/ASO_Factsheet_E-Voting.pdf

[4] "Geneva mounts e-voting charm o�ensive", by Swissinfo,
https://www.swissinfo.ch/eng/politics/pitching-for-partners_

geneva-mounts-e-voting-charm-offensive/42439582

[5] "Why Python is Slow: Looking Under the Hood", by Jake VanderPlas, see http://

jakevdp.github.io/blog/2014/05/09/why-python-is-slow/

[6] "Python speed: performance tips", from the o�cial Python wiki, see https://wiki.

python.org/moin/PythonSpeed/PerformanceTips

Page 54 of 65

https://eprint.iacr.org/2017/325
http://aso.ch/files/webcontent/direction/Factsheets/ASO_Factsheet_E-Voting.pdf
http://aso.ch/files/webcontent/direction/Factsheets/ASO_Factsheet_E-Voting.pdf
https://www.swissinfo.ch/eng/politics/pitching-for-partners_geneva-mounts-e-voting-charm-offensive/42439582
https://www.swissinfo.ch/eng/politics/pitching-for-partners_geneva-mounts-e-voting-charm-offensive/42439582
http://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/
http://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

7 Appendix

7.1 Sourcecode

The source code of this project can be found on github: https://github.com/nextgenevoting

7.2 Use Cases

Table 7.1: Use Case �Create new election events�

Use Case Create new election events

Primary Actor User
Description The system allows to create new election events
Precondition The system shows the available election events in a list
Main path
(M)

1. User clicks on "`create election event"'
2. System demands a name for the election event
3. User is redirected to the election overview page

Page 55 of 65

https://github.com/nextgenevoting

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Table 7.2: Use Case �Set-up an election event�

Use Case Set-up an election event

Primary Actor Election Administrator
Description The election administrator can set up an election. This involves

generation of the cryptographic electorate data in the back-end
Precondition A new election has been created
Postcondition The election has the status "Printing"
Main path
(M)

1. Election Administrator visits the "Election
Administrator"-view of a new election.

2. The system demands the following information:
� Number of parallel elections
� Candidates per election
� Number of possible selections per election event
� Number of voters
� Counting circles of the voters

3. User clicks on "Generate"

Table 7.3: Use Case �Printing of voting cards�

Use Case Printing of voting cards

Primary Actor Printing Authority
Description The printing authority generates voting cards
Precondition The election has the status "Printing"
Postcondition The election has the status "Delivery"
Main path
(M)

1. The election administrator visits the "Printing
Authority"-view of an election.

2. The election administrator clicks on "Print Voting Cards"
3. A list of all voters is displayed
4. The election administrator can select a voter to see his

voting card

Page 56 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Table 7.4: Use Case �Delivery of voting cards�

Use Case Delivery of voting cards

Primary Actor Printing Authority
Description The printing authority can send the voting cards to the voters
Precondition The election has the status "Delivery"
Postcondition The election has the status "Election Phase"
Main path
(M)

1. The election administrator visits the "Printing
Authority"-view of an election.

2. The election administrator clicks on "Deliver Voting
Cards"

3. The voting card shows up for every voter within the
Voters view.

Table 7.5: Use Case �Casting of a vote�

Use Case Casting of a vote

Primary Actor Voter
Description The voter can cast a vote by selecting his favored candidate(s) and

his voting code
Precondition

� The election has the status "Election Phase"
� A voter is selected in the voter view
� The voter has the status "Vote Casting Phase"

Postcondition The �rst election authority receives a ballot-check task
Main path
(M)

1. The voter visits the voter view and selects his voter object
2. The system demands a selection of the candidates and the

voter's voting code
3. The voter clicks on "Cast ballot"

Page 57 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Table 7.6: Use Case �Con�rmation of a vote�

Use Case Con�rmation of a vote

Primary Actor Voter
Description The voter can con�rm his vote by verifying the veri�cation codes

and entering his con�rmation code
Precondition

� The election has the status "Election Phase"
� A voter is selected in the "Voter"-view
� The voter has the status "Con�rmation Phase"

Postcondition The �rst election authority receives a "Check-con�rmation task"
Main path
(M)

1. The voter visits the "Voter"-view and selects the corre-
sponding voter from a list

2. The system displays the veri�cation codes of the selected
candidates

3. The voter must manually verify that the displayed codes
match the veri�cation codes of the selected candidates on
his voting card

4. The system demands the con�rmation code
5. The voter clicks on "Con�rm vote"

Page 58 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Table 7.7: Use Case �Checking a ballot�

Use Case Checking a ballot

Primary Actor Election Authority
Description The election authority can verify the validity of a ballot and re-

spond to the voters query
Precondition

� The election has the status "Election Phase"
� The currently selected election authority has a new "Check
ballot task"

Postcondition
� The next election authority receives a "Check ballot task"
� If this election authority was the last one, and the ballot was
valid, the voter now has the status "Con�rmation Phase"

Main path
(M)

1. The user visits the "Election Authority"-view and se-
lects one of the available election authorities that has new
"Check ballot task"

2. The system displays the query, the ballot proof and the
voting credential of the voter

3. The user clicks on "Check validity"
4. The system displays the result of the validity check
5. The user clicks on "Respond"

Page 59 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Table 7.8: Use Case �Checking a con�rmation�

Use Case Checking a con�rmation

Primary Actor Election Authority
Description The election authority can verify the validity of a con�rmation and

respond to the voters query
Precondition

� The election has the status "Election Phase"
� The currently selected election authority has a new "Check
ballot task"

Postcondition
� The next election authority receives a "Check con�rmation
task"

� If this election authority was the last one, and the con�r-
mation was valid, the voter now has the status "Finalization
Phase"

Main path
(M)

1. The user visits the "Election Authority"-view and se-
lects one of the available election authorities that has new
"Check con�rmation task"

2. The system displays information about the con�rmation
3. The user click on "Check validity"
4. The system displays the result of the validity check
5. The user clicks on "Finalize"

Page 60 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Table 7.9: Use Case �Mixing�

Use Case Mixing

Primary Actor Election Authority
Description Every election authority can perform the mixing on the extracted

list of encryptions
Precondition

� The election has the status "Mixing"
� The previous election authority has already performed the
mixing

Postcondition
� The next election authority is able to mix

Main path
(M)

1. The user visits the "Election Authority"-view and selects
one of the available election authorities that has not mixed
before

2. The system displays the list of encryptions of the previous
election authority (or the �rst one in case the �rst election
authority is selected)

3. The user clicks on "Mix"
4. The new, mixed list of encryptions is added to the known

data of this election authority

Table 7.10: Use Case �Decryption�

Use Case Decryption

Primary Actor Election Authority
Description Every election authority can perform the (partial) decryption
Precondition

� The election has the status "Decryption"
� The previous election authority has already performed the
decryption

Postcondition
� The next election authority is able to decrypt

Main path
(M)

1. The user visits the "Election Authority"-view and selects
one of the available election authorities that has not de-
crypted before

2. The system displays the list of encryptions
3. The user clicks on "Decrypt"
4. The list of partial decryptions is added to the known data

of this election authority

Page 61 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Table 7.11: Use Case �Tallying�

Use Case Tallying

Primary Actor Election Administrator
Description The election administrator can perform the tallying and view the

�nal result
Precondition The election has the status "Tallying"
Postcondition The election has the status "Finished"
Main path
(M)

1. The user visits the "Election Administrator"-view
2. The user clicks on "Tally"
3. The �nal result is added to the known data of the election

administrator

7.3 Test Cases

Page 62 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Table 7.12: Test Case �Pre-Election�

Description This test covers all the pre-election steps, including the creation of a new
election, setting it up from the election administration view and the printing-
and delivery of the voting cards

Precondition
Postcondition

� The election event is in the status "Election"
� The voters have received a voting card

Steps
1. Start our application
2. Choose �Election Events" from the main menu
3. Click on "Create new election event"
4. Enter a name for the election event and choose a security level and

click on "create"
5. The "Election Admin" tab should now have an interaction noti�-

cation
6. Visit the "Election Admin" view
7. Enter at least 3 for the number of voters, at least 3 di�erent candi-

dates and 1 for the number of selection and click on "Setup Election
Event"

8. The "Printing Authority" tab should now have an interaction no-
ti�cation

9. Visit the "Printing Authority" view
10. Click on "Print Voting Cards"
11. The voting cards for all voters should now be displayed
12. Click on "Deliver Voting Cards To Voters"
13. The voting cards should now disappear and the "Voters" tab should

now have an interaction noti�cation
14. Visit the Voters view, select a voter and check that the voting card

is displayed correctly

Page 63 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Table 7.13: Test Case �Election�

Test-Case 2. Election
Description This test covers the election phase in which a voter casts and con�rms a

ballot and the election authorities checks the ballots and con�rmations and
responds to the voter.

Precondition
� The election event has been set up appropriately as described in test-
case 1.

� The second and third election authorities should have automatic task
processing enabled

Postcondition
� The election event is in the status "Election"
� There are at least 3 con�rmed ballots

Steps
1. Visit the "Voters" view and select voter 1
2. Check the box for candidate 1 in the vote casting form
3. Scratch open the voting code on your voting card and click on the

revealed code. The code should be copied into the "voting code"
input �eld

4. Click on "Cast vote"
5. Visit the "Election Authority" view and click on the �rst election

authority
6. There should be a check-ballot task for voter 1. Click on "Check

Validity" to check the ballot. The ballot should be valid. Click on
"Respond".

7. The ballot should be added to the ballot list of this election author-
ity. Verify that the ballot is also contained in the bulletin boards
ballot list!

8. Return to the voters view. The voter should be prompted to verify
that the returned veri�cation codes match. If so, reveal your con-
�rmation code and click it to copy it to the input �eld. Click on
"Con�rm Vote"

9. Visit the "Election Authority" view and click on the �rst election
authority

10. There should be a check-con�rmation task for voter 1. Click on
"Check Validity" to check the con�rmation. The con�rmation
should be valid. Click on Finalize.

11. The ballot list should now display the ballot as "`con�rmed"'. The
con�rmation should also show up in the con�rmation list if you
expand the ballot.

12. Return to the voters view. The voter should now see the returned
�nalization code that should match the code on the voting card

13. Repeat this test-case for voter 2 and voter 3, choosing the second
candidate for voter 2 and the third candidate for voter 3

Page 64 of 65

Bern University of Applied Sciences Visualizing Geneva's Next Generation E-Voting System

Table 7.14: Test Case �Post-Election�

Test-Case 3. Post-Election
Description This test covers the post-election phases: mixing, decryption, tallying and

veri�cation
Precondition

� The election event has been set up appropriately as described in test-
case 1.

� 3 voters have casted their vote according to test-case 2.

Postcondition
� The election event is in the status "Finished"
� The veri�cation has succeeded and the correct election result is pub-
lished on the bulletin board

Steps
1. Visit the Election Administrator view
2. Click on End Election Phase and Start Mixing

3. Visit the Election Authority view and choose the election au-
thority 1

4. Click on Mix

5. You should see the list of encryptions being shu�ed and re-
encrypted. The result should be added to the data. The same
should automatically have happened for the other election author-
ities.

6. Visit the Election Administrator view and click on Start De-
cryption

7. Visit the Election Authority view and choose the election au-
thority 1

8. Click on Decrypt
9. The partially decrypted data should appear in the election author-

ity data. The same should have happened for the other election
authorities.

10. Visit the Election Administrator view and click on Tally
11. Under "Data", you should see the decrypted votes and the �nal

result in a text- and chart representation.
12. Click on Publish Result and visit the Bulletin Board view
13. The bulletin board should now also contain the result of the election

event.
14. Visit the Veri�er view and click on Verify Election
15. All checks should show a green icon and a success message.

Page 65 of 65

	Introduction
	Electronic Voting
	CHVote Protocol
	Project Task

	Project Management
	Goals
	General Requirements
	Election Overview
	Election Administrator
	Printing Authority
	Election Authority
	Voter
	Bulletin Board
	Out-of-Scope

	Time Schedule & Implementation Phases
	Use Cases

	CHVote Protocol
	Actors
	Pre-Election & Voting Cards
	Vote Casting with Oblivious Transfers
	Anonymity with a Re-Encryption Mix-Net

	Application Description
	Application Overview
	Design

	Technical Implementation
	Technology & Language Decisions
	Architecture
	Back-End
	VoteService
	Data-Sync Service
	REST API

	Crypto-Library
	File Structure
	Public Parameters
	Coding Style
	Return Types

	Front-End
	Components
	Centralized Data-Store & Flux Pattern
	Internationalization (i18n)
	Development Environment
	Staging Environment

	Challenges
	WebSocket Subscription Concept
	Python Issues

	Automatic Task Processing for Election Authorities
	Testing

	Conclusion
	Appendix
	Sourcecode
	Use Cases
	Test Cases

