Bern University Engineering and Information Technology
F of Applied Sciences

Master's Thesis
Master of Science in Engineering (MSE)

A Mobile Application for
Boardroom Voting

Philémon von Bergen

Aduvisor: Prof. Dr. Reto E. Koenig
Bern University of Applied Sciences

Expert: Prof. Dr. Ulrich Ultes-Nitsche
Université de Fribourg

Date: February 7, 2014

Abstract

This document is part of a master’s thesis, which realized a ready-to-be-used application for e-
voting covering the special topic of boardroom voting. The application, running on a mobile
device, allows spontaneous verifiable and secure e-voting for a small group of people present at
the same location. It is built upon an existing cryptographic protocol specially designed for the
mentioned purpose. No central infrastructure is required, thus only network enabled mobile devices

are needed in order to run a vote. The realized application is highly influenced by the results of
multiple usability studies.

Acknowledgment

| would like to thank everybody who contributed in one way or another to this master’s thesis.
First of all, | would like to thank the e-voting group of the RISIS institute for the support in my
master studies. A special thank to Reto Koenig, who coached me in the different projects | had
to realize and especially for his advices in this master’s thesis.

| further want to thank Jiirg Ritter for the work done together on this project and for the pertinent
discussions we had about different topic related to this work.

| also would like to thank Ulrich Ultes-Nitsche who accepted to be the external expert evaluating
this thesis.

| very much appreciated the help received from my mother, Lydia, who accepted to read this
document and to note the spelling mistakes and other errors.

A special thank goes to my wife, Marlyse, who supported me during my whole master studies and
motivated me to move forward.

Finally, a special thank to you, my reader, for being interested in my work and for being indulgent
with my sometimes not so good English.

Statutory Declaration

| hereby declare having done this master’s thesis myself without any unauthorized help. All in-
formation sources that strongly helped me in my work are fully referenced in this document or
directly in the source code.

Title of the thesis: A Mobile Application for Boardroom Voting
Firstname, Lastname: Philémon von Bergen

Date, Place: February 7, 2014,
Biel, Switzerland

Signature:

=

phil
Signature

Contents

1 Introduction

2 Background and Related Work
2.1 Desirable Properties for Secure E-voting

2.2

Cryptography Basics

2.2.1 Discrete Logarithm Problem

2.2.2 Homomorphic

Encryptiono oo

2.2.3 Zero Knowledge Proofs

2.2.4 Commitment
2.2.5 Threat Model

2.3 Related Work
| Theory
3 Protocol to Implement
3.1 Properties of the Protocol
3.2 The Protocol in Details

3.3
3.4

3.2.1 Initialization

322 SetupRound
3.23 Commitment Round
3.24 Voting Round
325 Tallying
326 Recovery Round
3.2.7 Tallying after Recovery Round
3.2.8 Extension to Multiple Candidates or Options
Generalization of the Concept Used in the Protocol
Analysis of the Protocol Properties

3.4.1 Perfect Ballot

Secrecy

3.4.2 Self-tallying
3.43 Fairness,
344 Disputefreeness
345 Robustness

4 Graphical User Interfaces

4.1
4.2

Findings of the Study
Obtained Interfaces

5 Benchmarks

Contents

10
10
11
11
12
13
15
16
17
19
20
22
22
22
23
23
23
23

24
24
25

30

5.1 Graphical User Interfaces Benchmarks 30
5.2 Protocol Benchmarks 30

6 Summary 33
Il Practice 34
7 Organization 35
7.1 Planning L 35
7.2 Realization 36
7.3 Sourcecode 37

8 Specifications 38
8.1 Requirements for the Application 38
8.2 ToolsUsed 39
8.2.1 Android 39

8.2.2 InstaCircle 40

8.2.3 Alldoyn 41

8.2.4 Unicrypt e 41

9 Implementation 43
9.1 UserlInterfaces 43
9.1.1 Initial User Interfaces 44

9.1.2 Modifications Done to Original Flow 49

9.1.3 Implementation of the Storyboard in Android 50

9.1.4 Other Features 57

9.2 Communication Layer 57
9.2.1 Security Assumptions 58

9.2.2 Possible Attacks 58

9.3 Architecture of the Application 60
9.4 Implementation of the Protocol 66
9.4.1 Protocol Initializations 67

942 SetupRound 69

9.43 Commitment Round 69

944 Voting Round 70

945 Recovery Roundo 70

946 Tally 70

9.4.7 Using Unicrypt 74

9.4.8 Other Functionalities. 74

10 Results 76
10.1 User Interfaces 76
10.2 Load Tests 76
10.3 Comparison with the Concurrent Thesis 79

11 Future Work 80
12 Summary 82

Contents v

13 Conclusion
References

A User handbook

List of Figures

2.1 Zero knowledge proof: Peggy choosesaway
2.2 Zero knowledge proof: Victorenters.
2.3 Zero knowledge proof: Peggy returns the indicated way

3.1 Setupround
3.2 Until commitment round
3.3 Until voting round
34 Untiltallyround
3.5 Until recoveryround
3.6 Tally after recovery round
3.7 Vote encoding using Baudron et al method00

4.1 Setupofthevote
42 Setup of thenetwork
4.3 First part of voting process for the administrator
4.4 First part of voting process for the voter
4.5 Second part of voting process
4.6 Votesarchives

5.1 Graphical representation of the complexity of the tally process

7.1 Expected planning
7.2 Effective work

9.1 Interfaces of theadminapp
9.2 Interfaces of thevoterapp
9.3 Interfaces of the voting library appo
9.4 Interfaces of the result library app
9.5 Buttons at bottom on smartphones L
9.6 Buttons in top baron tabletso
9.7 Special buttonsintopbar
9.8 Blank vote and "+" button
9.9 Review screen with checkbox L
9.10 Helpoverlay
9.11 Result screen with pie chart and "repeat vote” button
9.12 Organization of the components
9.13 Data model for the vote in the flow manager component

List of Figures

83
84

85

(@)

13
15
16
17
19
20
21

26
26
27
28
29
29

31

36
37

46
47
48
49
51
51
52
53
54
55
56
61
62

vi

9.14 Strategy pattern for serialization 63
9.15 Flow of the state machine, 64
9.16 Entities of the state machine 64
9.17 Structure of anaction 65
9.18 Data model for the vote in the protocol component 67
9.19 Number of valid results in Pascal's triangle 71
9.20 Vote encoding using Baudron et al method oL 73
A.1 MobiVote mainscreen 86
A.2 Available votes 87
A3 Votesetup e 87
A.4 Network configuration 88
A5 Advanced configuration 88
A.6 Network information 89
AT NFCtag 89
A.8 Joinelectorate 90
A9 Enter password 90
A.10 Advanced configuration 90
A1l Scan NFCtag 90
A.12 Admin defines electorate 91
A.13 Display electorate 91
Ald Vote review L e 92
A1b Vote screen e 92
A.16 Waiting for ballots 92
A.17 Result of the vote 93
A.18 Vote archives 94

List of Tables

7.1 Source code repositories 37
9.1 Example of precomputations for p=4ando=3 73
10.1 Time required for verifying one proof of validity 77
10.2 Time to compute one permutation in the tally process 78
10.3 Speed-up with precomputations 78

List of Tables vii

1. Introduction

"Government of the people, by the people, for the people” is the way Abraham Lincoln (1809-
1865) defined the now most widespread political regime in the world: democracy. This idea exists
since Antiquity already and has not changed a lot since then. From the beginning of democracy, it
seemed necessary to allow people to give their opinion on some topics. The way of doing it changed
a lot over time, especially in the last century, due to the technical and societal development.

During the past years, the research field on electronic voting (hereinafter abbreviated as e-voting)
has become active and many e-voting protocols have been published. Their focus was mainly
directed on large scale voting, thus requiring a central infrastructure collecting all the votes. Most
of these protocols take advantage of this required infrastructure and base much of their security
and computation requirements on it.

The present master's thesis however focus on a different type of e-voting scheme, namely board-
room voting. In boardroom voting, a small number of participants vote at the same location and
at the same time. Boardroom voting could be achieved with a centralized protocol. However,
the evolution of computer science towards mobility tends to promote spontaneity. So, having an
ad-hoc boardroom voting system running on mobile device and usable without any preparation
could really be welcome. This however generates new challenges in terms of security because there
is no central trusted party anymore.

The e-voting group of the Research Institute for Security in the Information Society (RISIS) of
the Bern University of Applied Sciences (BFH) is active in this field since a few years. This group
has decided to go further into boardroom voting protocols. So, two master’'s theses have been
realized in this context. Their goal was to develop an application for mobile device providing an
ad-hoc system for boardroom voting. In one of these master's theses, the student, Jiirg Ritter,
implemented a protocol that initially was designed for a centralized voting scheme, but which could
be adapted to boardroom voting. This protocol is described in "A Secure and Optimally Efficient
Multi-Authority Election Scheme” written by R. Cramer, R. Gennaro, and B. Schoenmakers [2].
The obtained results can be found in Jiirg Ritter's documentation [9].

In the second thesis, which is described in the present document, the protocol implemented was
especially designed for boardroom voting. This protocol is described in the paper "A Fair and
Robust Voting System by Broadcast” published by D. Khader, B. Smyth, P. A. Ryan, and F. Hao
[7]. A collaborative work was done by the two students on the user interfaces in order to reuse
them in their own project.

Outline This document consists of two main parts. The first one is dedicated to people who are
only interested in the result of this thesis. The second part is the project report containing all the
details of the implementation. Next chapter is a general chapter introducing some basis required
to understand both parts.

Chapter 1. Introduction 1

The first part describes in detail the protocol that was implemented. A second section comments
the results obtained of a study about usability of a boardroom voting application. Then this part
ends with a discussion on usability and on efficiency of the protocol.

The second part focuses on three aspects. The first one is the organization of the thesis. The
second one is the implementation of a mobile application for boardroom voting. The third aspect
is the results obtained in this project. Finally, the last chapter is dedicated to improvements that
can be made in the application.

Chapter 1. Introduction 2

2. Background and Related Work

This chapter presents the problems that apply in e-voting and lists some desirable properties for
this field of application. Then follows an overview on cryptographic primitives used to satisfy
security requirements for secure e-voting. The focus is put on primitives that are important for the
protocol that was implemented in this project. Then, a description is given on how the protocol
works.

2.1. Desirable Properties for Secure E-voting

In our world, more and more tasks can be done electronically. Even bank transactions can now be
requested on a computer since e-banking became popular in the last few years. Of course, a desire
appeared to do the same with voting. Although the research field is active since a few years, there
are not a lot of working and secure e-voting systems. The reason for that must be searched in
the properties that are commonly recognized as security requirements for e-voting. Here follows a
non-exhaustive list of some of them:

o Eligibility: only legitimate voters can submit a vote, and only one.

e Integrity: once a vote cast, it cannot be modified or destroyed.

e Accuracy: invalid votes are not counted at tally phase.

e \ote privacy: nobody can say how another voter has voted.

e Anonymity: nobody can say whether someone else has voted or not.

e Receipt-freeness: the voter gets no information that could be used to prove to a coercer
that they have voted in a specific way.

e fairness: no results can be computed before voting period is over

e Coercion resistance: nobody can force someone to vote in a specified way. This implies that
a coercer cannot know if the voter voted as asked.

e Robustness: if a small number of people collude, they cannot compromise one of the prop-
erties mentioned here.

e Individual verifiability: a voter can check if their ballot has been counted as they cast it.

e Universal verifiability: everyone can verify the correctness of a vote outcome.

Chapter 2. Background and Related Work 3

These properties are inspired from the publication of Rolf Haenni and Oliver Spycher [5] and the
one of Delaune and Kremer [3]. As one can see, the requirements for secure e-voting are high, even
higher than for paper voting or mail voting. For example, individual verifiability does not apply to
mail voting, since the voter has no way to know if their vote has been counted. Currently, none
of the used e-voting systems fulfills all these requirements neither does the product developed in
this project. The goal however is to fulfill as many as possible.

2.2. Cryptography Basics

In this section, some cryptographic primitives are briefly introduced. These primitives, with a lot of
others, are widely used in e-voting, but also in other fields of application. This section only focuses
on the building blocks that are used in the protocol that was implemented in this project.

2.2.1. Discrete Logarithm Problem

Public key cryptography relies on mathematical problems for which there is no known efficient
solution. They are called one way functions. These functions are easy to compute for every input,
but they are difficult to invert. This means that it is hard to find the preimage of a given image.
Easy and hard must be understood in term of computational effort. Easy can be computed in
polynomial time while hard cannot.

In the field of cryptography, there are two well-known and widely used such functions. The first
is the prime number decomposition. It is easy to compose a number with given prime factors.
However, if the number is large enough, it is considered to be hard to find the prime factors of a
given random number. This problem is the base of the RSA encryption and signature schemes.
The second widely used problem is the discrete logarithm problem. Solving this problem means
find an integer k solving the equation b = g, where b and g are elements of a mathematical
group. This is believed to be difficult and time consuming for large numbers. There is no known
efficient algorithm yet. Most of the asymmetric cryptography schemes that are used in this project
base on the assumption that this problem is not solvable for large numbers. A typical example,
that is however not used here, is the Elgamal crypto system.

2.2.2. Homomorphic Encryption

A homomorphic function is a function for which following condition holds. Let us define two
mathematical groups (X, @) and (Y, (-)) with their corresponding operation. Function f : X — Y
is homomorphic for operations (0, ()) if and only if:

f(m) @ f(mz) = f(m O my)

This property is interesting for encryption schemes, particularly in e-voting. A homomorphic
encryption scheme allows to do computations on encrypted ballots in the same manner that they
would be done with decrypted ballots. In e-voting, the interest of such a scheme is that ballots
must not be decrypted before performing an operation, such as tallying. This is very useful the
votes secret.

Chapter 2. Background and Related Work 4

In some cases, the homomorphism is obtained through multiplication, but for summing up votes,
addition is needed. In such cases, this operation can be obtained by putting the interesting value
in a exponent, using the following property:

ax-a = aty

In this case, the interest lies in the addition of x and y but a multiplication homomorphism is
used. A random value a can be used as base for the exponentiations. With this trick, the sum is
obtained in the exponent of the result.

In order to get rid of the base a, a discrete logarithm must be computed on the obtained result. As
mentioned earlier, this is considered to be too inefficient on big numbers. For this case in e-voting,
one can try out every possible solutions because they are not too numerous.

2.2.3. Zero Knowledge Proofs

Zero knowledge proofs allow a prover to prove to a verifier that a given statement is true, without
revealing more information about it. A secret is needed to forge the proof, thus nobody else than
the owner of the secret is able to create this proof. The zero knowledge proof is a probabilistic
proof. It can be explained as follows. Peggy (the prover) wants to prove to Victor (the verifier)
that she owns a key. They stand in front of a cave shaped as circle. In the middle of the cave, at
the opposite of the entrance, there is a closed door. This door can only be opened with the key
that Peggy claims to own. So, Peggy enters in the cave, randomly chooses to go left or right and
goes to the door. During this time, Victor stays outside, so he does not see which path is taken

by Peggy®.

Figure 2.1.: Zero knowledge proof: Peggy chooses a way

Then Victor enters in the cave and shouts the way he wants Peggy to come back.

images and information from http://en.wikipedia.org/wiki/Zero-knowledge_proof

Chapter 2. Background and Related Work 5

Figure 2.2.: Zero knowledge proof: Victor enters

If Peggy took the right side, and Victor asks her to return through the left side, Peggy will have
to open the door with the key she owns in order to fulfill Victor's request.

Figure 2.3.: Zero knowledge proof: Peggy returns the indicated way

If Peggy is lying about the ownership of the key, she will not be able to go through the door.
However, if she went right, and Victor asks her to return right, she will be able to fulfill the
request. As one can see, there is 50% probability that she does not own the key but can satisfy
the demand anyway. In order to reduce this probability, this scenario can be repeated many times.
So, Peggy is able to prove to Victor that she owns the key without showing it.

As one can see, this proof needs an interaction between the prover and the verifier. There is
a variant of this proof that does not require this interaction. It is called non interactive zero
knowledge proof.

Non Interactive Zero Knowledge Proofs

In many cases, a prover should be able to compute a zero knowledge proof without having to
interact with a verifier. This is possible by replacing the challenge normally asked by the verifier
with a cryptographic hash function. The content hashed and used in the proof is publicly known
by the prover as well as by the verifier. So, this hash has the same functionality as the challenge
in interactive proofs. This technique, also called Fiat-Shamir heuristic, was described by Fiat
and Shamir in 1987 [4]. This scheme has the advantage that everybody can verify a proof once
published and not only the verifier that sent the challenge, as that would be the case in the
interactive variant.

Chapter 2. Background and Related Work 6

There are various types of proofs. Here, only those used in this protocol are described. Moreover,
this section only gives an overview on what these proofs do. They are described in more detail in
chapter 3.

Proof of knowledge of a discrete logarithm This proof allows the prover to demonstrate
that they know the preimage of a discrete logarithm. If they publish y = g*, they can prove that
they know x without revealing it. In other words, they know the discrete logarithm of g*. Here,
g is a generator of a cyclic group.

Proof of validity The prover has to choose one preimage out of a set of authorized preimages.
Then, they compute the image corresponding to the chosen preimage. This proof then allows them
to show that the computed image is the image of one preimage contained in a set of authorized
preimages. By doing this, nor the preimage neither the image is revealed. This proof is not a
standard proof, but is more an OR combination of proofs. A correct proof is simulated for each
unchosen preimage, and they are then all combine together with the proof corresponding to the
selected preimage. In the present case, this proof is used to show that the submitted encrypted
vote is one of the authorized votes.

Proof of equality between discrete logarithms This proof allows a prover to demonstrate
that two discrete logarithms are equal, in other words, that the prover used the same secret for
computing two different exponentiations. For example the prover want to prove that they used x
to compute a = g* and b = h* so that log, a = logjb.

2.2.4. Commitment

A commitment scheme allows one to commit to a value and keep it secret to others during a certain
time, revealing it later. A commitment cannot be modified once computed. Once the commitment
and the committed value published, everybody can check if the commitment corresponds to the
committed value. Commitments always take place in two phases:

1. first, the value is chosen, the commitment is computed and then published
2. second, the committed value is published, and the commitment can be verified

Commitments have two main properties, hiding and binding. A commitment is called perfectly
binding if the committed value cannot be computed before the second phase, no matter how
much computing power is used. For a perfectly binding commitment, it is not possible to change
the value of the commitment, no matter how much computing power is used. Instead of being
perfectly hiding or binding, these properties can be computationally hiding and biding. This means
that these properties are guaranteed as long as only limited computational power is available.

Chapter 2. Background and Related Work 7

2.2.5. Threat Model

In the security branch of computer science, a threat model describes a set of security aspects that
are considered for a specific scenario. In other words, it defines the possible attacks that could be
realized and specifies the assumption under which a product is considered to be secure.

2.3. Related Work

As said before, another thesis was realized concurrently by Jiirg Ritter [9]. Its goal was the same
as this thesis with the only difference that another protocol had to be implemented.

The University of Luxembourg already implemented the protocol used in the present thesis, but
the implementation only supports computers.

The Technische Universitat Darmstadt is also planning to implement a mobile app running different
protocols. Their app should support various types of votes (1-out-of-n, k-out-of-n, yes-no, ...) and
should automatically choose the most efficient protocol depending on the type of vote that will be
done.

Chapter 2. Background and Related Work 8

Part |I.

Theory

3. Protocol to Implement

The protocol that was implemented was published in a paper titled A Fair and Robust Voting
System by Broadcast written by Dalia Khader et al in 2012 [7]. In fact, this protocol is an
extension of another published in 2010 in Anonymous Voting by Two-Round Public Discussion by
Hao, Ryan et Zielinski [6]. This last mentioned paper proposes a decentralized voting protocol in
two phases. However, it contains two disadvantages, namely the lack of robustness if one of the
voters does not participate in the second phase and the lack of fairness since some of the voters
can compute a partial result before others.

The second publication proposes solutions to these problems by adding two new phases. The first,
solving the problem of fairness, is a round where each participant makes a commitment for the
vote they choose and publishes it before publishing the vote itself. That avoids that a participant
receives the votes and computes a partial result in order to adapt their own vote. The second phase
is a recovery phase allowing to recover if a voter does not submit a vote, solving the robustness
issue.

This chapter merges both mentioned publications. Its goal is to explain the whole protocol develop-
ing the mathematical formulas in order to verify the correctness and facilitate its understandability.
In this chapter, no distinction is made between the elements of the first published protocol and
the improvements of the second. In this part of the document, the devices running the protocol
are assumed to be secure.

3.1. Properties of the Protocol

The goal of the protocol is to obtain a decentralized voting system, what means a system without
any central infrastructure. Only voters participating to the vote are involved in the protocol and
no other third party. This property implies some difficulties that are not present in a centralized
voting system. In the original papers, some aspects are analyzed in more detail, namely:

e Perfect ballot secrecy: the choice made by a voter is never disclosed, this means that nobody
can know what a participant has voted. In some cases, for example if there are only two
voters, some information can be obtained from the final result. Such cases can however not
be avoided here.

e Self-tallying: since no third party is involved, the tally must be done by the voters them-
selves.

e Fairness: nobody can compute partial results before having voted themselves. More precisely,
this means that the computation of partial results would theoretically be possible, but the
person doing that would not be able to change their vote.

Chapter 3. Protocol to Implement 10

e Dispute-freeness: this property is satisfied if each voter (and maybe even a third party) can
check that the protocol was respected by all the voters.

e Robustness: a corrupt voter cannot make the protocol fail.
These properties are analyzed in more detail in the section 3.4.

This protocol bases on the assumption that there is a public and authenticated communication
channel used to exchange the needed messages. This notion of public channel ensures that every
participant can see what happens on the network, in order to avoid private message exchanges
between two participants, for example the submission of two ballots or other form of collusion.
The authentication property avoids that a voter sends a message on behalf of somebody else. So,
the property of dispute-freeness can be assured.

3.2. The Protocol in Details

The protocol described in the publication is composed of three main rounds.

e Setup round: this is a preparation phase during which each voter chooses keys and publishes
those that must be known by the other participants.

e Commitment round: during this phase, each voter chooses the option or candidate they
want to vote and commits themselves to this choice. Only the commitment is published at
this stage.

e Voting round: during the third phase, the vote of each participant is published.

After these three phases, the result of the vote can be computed. If one of the voters left the
protocol run after having participated to the first or the second phase but before participating to
the third, then a recovery round must be initiated. This is necessary because the keys of the voters
are combined during the setup round. If a voter does not submit a ballot, the result cannot be
computed as long as the key of this participant is taken into account. This recovery round only
computes a cancelation key for the user that did not submit a ballot.

The following sections present the mathematical computation done in each round.

3.2.1. Initialization

First, there are some initializations needed:
p and g are two prime numbers such as p = 2q + 1.

The computations are done in multiplicative cyclic group (G, -) of order g which is a subgroup
of the multiplicative group Z of order p (Z}) and where the Decisional Diffie Hellman problem is
intractable in a polynomial time. g is a generator of G. The n € Z, participants of the protocol
(identified with the index /) must agree on (G, g) and p and q. Z, is an additive modular group
of order q.

Chapter 3. Protocol to Implement 11

To make the understandability easier, the explanations given here consider that a vote v € {0, 1}
where 0 means choice no, and 1 choice yes. Explanations how the protocol can be extended to
support multiple candidates or options will be given later.

In order to make it more readable, modulos have been omitted. In reality, computations are done
mod p and mod q in the exponent.

3.2.2. Setup Round

Each voter / € n chooses a private value x; and computes the corresponding public value a; which
is a commitment to x;. This commitment is published.

Xi €R Zq
a=g*

Proof of knowledge of x;

At this stage, / must also prove that they know the value X;, in order that the other partici-
pants can verify if / is really the owner of the private value they claim to have. This can be done
with a proof of knowledge of discrete log.

Initialization

e H: cryptographic hash function on which the participant agreed

Proof
e / chooses v €r Zgq
e they compute z = H(g, 9", g%, i)
e they compute r = v — x;z

e finally, they publish (g", r)

Verification

e the verifier checks if g¥ and g"a? are equal

Demonstration

Z

- ad

ro.o Xz

V=XiZ | XZ

gX,‘Z

v

Chapter 3. Protocol to Implement 12

The figure 3.1 resumes the setup round. Red values are private values and the green ones are
published values.

Setup-up
round

@ v €rZy—ay = g™

® ., cpn Lg—as = g*»

€ 13 cr Zy—az = g*

Figure 3.1.: Setup round

3.2.3. Commitment Round

Each voter 1 € n computes h; as follows:

i—1
h/ = gyi — 1_]‘[_!7./-:1 aja — g(X1+...+X,',1)7(X,'+1+...+Xn) (31)
J=i+1

Moreover, they choose the option they want to vote and compute
bi=h?-g"

where v; is their vote and v; € {0, 1}. b; is not published at this stage in order to avoid computation
of partial results. h; is not published either.

Proof of validity of v;

In order to proof that their vote is valid, / has to compute a disjunctive proof of equality between
discrete logarithms. In order to compute this proof, the terms (g*, g*¥ ") can be considered as
a pair (a, b).

Initialization
e H: cryptographic hash function on which the participant agreed

e (a,b) = (9% gg") where g =1 ("no” vote) or g* = g ("yes" vote)

Proof
e For each k € {0, 1}\v;

e the voter chooses ¢ €r Zg, Sk €Er Lgq, W €r Zgq

Chapter 3. Protocol to Implement 13

e they compute
g*
dx = ;
h*«
O}
gk
e For the vote v;, they choose w €r Z, and compute the witness: a, = g" et b, = h"
e Challenge: ¢, = H(a, b, ag, by, a1, b1) — >, ¢«

ke{O,l}\v,»

e Response: s, = w + X, - ¢,

they finally publish the proof (a, by, ck, Sx) respectively (a,, b,, ¢,, s,) for all k € {0, 1}

Verification
e Given (a, b) et (ag, bo, Co, So, a1, b1, C1, 51)
e For all k € {0, 1}, the verifier checks if g = ax - a% and h*% = by - (b/g*)%
e they also check if H(a, b, ap, bo, a1, b1) = > <«

ke{0,1}
Demonstration
For v = v;:
gsv = a,- 3¢
gw+x,~cv — gw . acv
— gW . gx,cv
b\
hsv — bv . (?>
b\
+ i"Cv —
hW Xj+C — hW . (J)
b\
iWEXyi-Cv i
gyw Xiyi'Cy gyw(?)
gXIYI . gV Cv
gin+Xiyf'CV = g (") with gk =g"
For each k € {0, 1}\v;:
gSk — ak aCk
= g—$k Cv
ack

Chapter 3. Protocol to Implement

b\
= o)

This proof contains a commitment for v; because b; is hashed together with the other values of
the proof. So, this proof has two roles. It allows to proof the validity of the vote and allows the
participant to commit themselves to their vote. This proof is published in this round and works
also as commitment.

One also can see that this proof is easily extensible to more that two options.

The figure 3.2 resumes the two first rounds. As before, red values are private values and the green
ones are published values. The black ones are computed values.

Setup-up Commitment
round round
21_.;1;1 €n Zq_.(“ = ¢g"1+hy = g~ %27 % — U1 — commit to v; — by = h,i:l - gt
2;’.,172 €n an(I/Z _ .(];1:2 . h2 = 9117373 — V9 — commit to vy —bz = h;z -gv2
23_.;1:3 €Rr Z([——(],:; = g3+ hg = g$1+x2 — U3 — commit to vz — by = h§3 -g”

Figure 3.2.: Until commitment round

3.2.4. Voting Round

The voting phase simply consists of publishing b; that was computed before. Since a commitment
to v; has been published in the previous round, the participant is no more able to modify their
vote. They have to publish the b; (containing v;) that they generated for the proof of the previous
round. This allows to ensure the fairness property.

The figure 9.3 resumes the different rounds until the voting round.

Chapter 3. Protocol to Implement 15

Setup-up Commitment Voting

round round round
2?’ T1 ER Zq"al =g+ hy = g~ "7 — V1 — commit to v; — b} = h:fl CgU by
22"”72 €ER Lyg—ay = g*2~hg = g*1 78— V2— commit to vy — by = h72”2 g%+ by
23‘%1?3 €Rr Zq*’(],;; — gﬂfzs - hs = gmr‘rﬂcz — VU3 — commit to v ﬁb3 — h§3 ,gv3 L by

Figure 3.3.: Until voting round

3.2.5. Tallying

At this stage, the proofs have to be verified. If they are correct, the result can be computed in a
homomorphic manner:

H b, = H hf’g‘/’ _ ngl)/igvi — 927:1 vi (3.2)
i=1

=1 =1

where v = Y7 v; is the sum of 1 votes. The 0 votes can be computed with n — 1.

The discrete logarithm g7 can be computed because of the relatively small value of «y. An algorithm
like baby-step giant-step can be used in this case.

Demonstration

The equation 3.2 can be explained as follows:
[[or =1 (3.3)
i=1

Thus,
n
H gvi — ngn:l Vi
i=1

From 3.3:

n

ngfy‘ =1= XH:X/}// =0 (3.4)

i=1 i=1

Chapter 3. Protocol to Implement 16

From equation 3.1 we can deduct:

i—1

n
H=25m 2%
Jj=1 Jj=i+1
By inserting 3.5 in 3.4, we obtain:

n

n i—1 n n
E XiYi = E E XiXj — E E XiXj
i=1

i=1 j=1 i=1 j=i+1
= EE :Xin_§:§ XiX;
J<i i<y
= E § XX — E :5 XX
J<i J<i
=0

The figure 3.4 resumes the different rounds.

(3.5)

Setup-up Commitment Voting Tally
round round round
2?» r1 €ER Zq*’(ll = g%t hy = g_z2_x3 — V1 —= commit to v; — by = hfl . g”l — b g‘xlm?_}l‘l‘f . gvl
27 To ER Zqﬁ(@ = gmz - h2 = gml_w?» — V9 — commiit to vy ﬁb2 = th . gvz —{ by gxlz?m . gv2
2;’ I3 €ER Zqﬁ(]ﬁ = g™~ hg = gzﬁ"I? — U3 —» commit to v3 — by = h§3 - gU -+ by gmm - g¥s

Figure 3.4.: Until tally round

3.2.6. Recovery Round

Equation 3.2 shows that if one of the participants does not submit a vote or submits an invalid
vote, their corresponding b; will be missing. Thus, the result cannot be computed correctly. To
solve that, an additional round must be added where each i € L (where L is the set of participants

that have submitted a valid vote and |L| < n) computes

dj
Je{i+1,...,n}\L _

dj
Je{L,.i—1}\L

=

they then publish f)f" and a proof that this value was computed correctly.

Chapter 3. Protocol to Implement

(3.6)

17

Proof of correct computation of IA7,X

Xi

In order to prove that / has correctly computed /A7, , they will publish a proof certifying that
log, g* = logj, h¥. This proof is commonly called a proof of equality between discrete loga-
rithms.

Initialization

e H: cryptographic hash function on which the participant agreed

Proof

e / chooses w €r Zq

they compute g’ = g% et h) = h?

challenge ¢ = H(g', i)

® response S = W + C - X;

finally, they publish (¢, 7, s)

Verification

e Given g, h;, g%, I’ and the proof (¢',), s) the verifier checks if g° = ¢’ - (¢*)¢ and hf =
hi - (') where ¢ = H(g', hy)

Demonstration

g = g (g")°
g(w+c-x,) — gW'(gX,‘)C
g(w+c~x,)

e o= B (RO
RUTED = p ()
B(w+c~x,v)
1

The figure 3.5 resumes the different rounds until the recovery round. Let us imagine in the present
case, that voter 2 does not submit a vote.

Chapter 3. Protocol to Implement 18

Setup-up Commitment Voting

round round round
2? r1 €ER Zq**(ll = gml = h1 = g_x2_13 — U1 — commit to v — bl = hilrl . gvl | bl .
2;_ To ER Zq*, ag = g*2~hg = ¢g¥1 7% —VU2— commit to vy — by = th g% nothing submitted [—
2; T3 €ER Zqﬁ as = gm3 — h3 — gzl +Z2 . U3 commit to v3 — b3 — h§3 . g“?’ . bS |

Recovery
round

Figure 3.5.: Until recovery round

3.2.7. Tallying after Recovery Round

Once the previous explained proof verified, the L voters using the values obtained in the recovery
round can compute the result as follows:

g = [T b = [Ty - b 0" (37)

el el

Demonstration

When rewriting equation 3.7, we obtain:
glvEXiV[= ng/\[Xi . gin[. gVi — gl%xjyi+xjy[. g%l;vj — go . ggvj
ieL
We see that following condition is satisfied:

> ay) + (xi9) =0 (3.8)

JeL

Chapter 3. Protocol to Implement 19

When considering equations 3.1 and 3.6 where we can deduct that

j—

1 n
Yi = ZXJ - Z x; (from 3.1)

Jj=1 J=i+1

gi= > x— Y. x (from3.6)

je{i+1,...nH\L je{1,..i—1}\L
we see that 3.8 is true.

So, we can conclude that le works as cancellation key for each participant that has not submitted
a valid vote.

The figure 3.6 resumes the different rounds until the tally after the recovery round. Voter 2 is still
out of the game.

Setup-up Commitment Voting

round round round
.Q.T:rl ER Zq—»al = gml —»hl = g_ZZ_IL" — U1 — commit to vy *»bl = hgfl . g”l I bl L
224, To €ER Zq**(lg — g“’Q - h2 = gml*x3 — V9 — commit to vg —»bQ = hgg . gUZ 1 nothing submitted —
2;. T3 €ER Zqﬂag — 9953 L h3 — gx1+1:2 — VU3 — commit to v ﬂb3 = h:3r3 . gv?’ - b3 —

Recovery Tally after
round recovery round
— }3’1 = a9 = g:z:2 | ilﬂlh . bl — gxlztz ,g—xm% . gyl
wa — % _gfzrzﬁilgﬂs - by = g=E2TS . GLeTLEewT | s

Figure 3.6.: Tally after recovery round

3.2.8. Extension to Multiple Candidates or Options

The description of the protocol above only supports a vote v; € {0, 1} which corresponds to a
yes/no vote or to a two candidates election. However, this concept can be extended to support a
greater number of options.

Chapter 3. Protocol to Implement 20

The first approach would be to repeat the protocol k times in order to support an election with k
candidates. At each repetition, a voter could choose to elect the candidate, or not. This variant
is however not very usable, because of repetitive manipulations and waiting times.

A second approach is to adapt the protocol in order to support more candidates. Two levels are
affected by this modification. First, the encryption of the vote must be adapted. Second, the
validity proof computed during the Commitment round must be adapted. As this was already
mentioned in the corresponding chapter, this proof can be easily adapted.

For the adaptation of the encryption of the vote, following method can be used. Instead of sending
g - g"i, k different and independent generators (one for each candidate) are used. A vote would
look like this: g™ - o; where g; € {g1, 92, ..., g« }. The tally could be done as follows:

n
[[o" e=9 95 g2
=1

where ¢; to ¢k are the number of votes corresponding to each of the k candidates. The problem
with this method is that the g; must be chosen in a manner that different values of the ¢; do not
generate the same product, in which case, the polynom would not be unique. Therefore, Baudron
et al method [1] can be used. This method chooses a value m such that m is the smallest integer
satisfying the condition 2™ > n, where n is the maximum number of votes a candidate can receive.
So, a vote for candidate 1 is encoded as 2°, for candidate 2 as 2™, for candidate 3 as 227, and so
on. So, v; is:

20 for a vote for candidate 1

o 2m for a vote for candidate 2
=

2(k=1)m £5r 5 vote for candidate k

This concretely means that a constant number of bits are reserved for each candidate to encode
the number of votes this candidate received. The greatest value that can be encoded for one

candidate is equals to the number of voters. Figure 9.20! shows an encoded vote for candidate
B.

Candidate 3 Candidate 2 Candidate 1

0 0 0 0 0 0 0 1 0 0 0 0 | = 16y
4

length: m /

Chosen candidate: 2

Figure 3.7.: Vote encoding using Baudron et al method

The tally can then be done as at the beginning:

n
nglyl . gV/ — 927:1 Vi
i=1

limage created by Jiirg Ritter in [9]

Chapter 3. Protocol to Implement 21

where

n
ZV,‘:20'C1+2m'C2—|—...+2(k71)m'Ck

i=1

Values ¢; to ¢, are the number of votes for the k candidates respectively. This method allows to
compute a unique polynom. This allows to do an election k-out-of-n candidates. However, the
implementation in this project is limited to 1-out-of-n, because the validity proof becomes rapidly
very complex for k-out-of-n elections.

3.3. Generalization of the Concept Used in the Protocol

The value b, representing the encrypted vote of the voter / can be compared to a Pedersen
commitment. Indeed, a Pedersen commitment has the form g* - h" where g and h are generators
Vi

of the chosen group, r is a random value and secret of the commitment. In the case b, = h - g“,
h; becomes the second generator, x; the random value and v; the secret of the commitment.

As seen earlier, the multiplication of all b; causes the cancelation of the hf". So, only gZX' remains.
This can also be applied to the Pedersen commitment. If h is chosen as h; is in this protocol and
X; is used as random value, the multiplication of all commitments created with this scheme has
the particularity to get rid of the randomization, and thus reveal the sum of the secrets contained
in the commitments. It would be self-revealing.

This generalization could maybe be used in other fields than e-voting.

3.4. Analysis of the Protocol Properties

In the introduction of the previous section, the properties expected for this protocol were briefly
described. In this section, they are analyzed in more detail based on the explanations given in the
previous section.

3.4.1. Perfect Ballot Secrecy

This property means that the vote realized by a participant remains secret even if some of the
other voters collude. In the protocol, each voter publishes a public ephemeral key g*. The votes
are encrypted with a key derived from the ephemeral key of each participant and with the private
part of this ephemeral key (for instance, the cipher text looks like g*¥ - g'). Assuming that at
least one other participant (other than /) is honest, the value y; is a random secret value, because
it is computed with the x; (j # /). As each Xx; is uniformly distributed in Z, and at least one
X; is unknown by the colluders, they cannot compute y;. Thus, under Decisional Diffie-Hellman
assumption, an encrypted vote cannot be differentiated of a random value.

About zero knowledge proofs, the proofs computed in the protocol do not reveal information on
the vote. The proof computed in the setup round only reveal if a participant knows their x; value.

Chapter 3. Protocol to Implement 22

The one of the commitment round also only reveals one bit of information, namely if the vote is
valid or not. Finally, the one computed in the recovery round only says that h* was computed
correctly. With this information, the secrecy of the ballot cannot be broken.

The tally is obtained by the multiplication of all votes. The information known by the participants
at the end of the voting period is only the final result. So, the confidentiality of the votes is kept.

3.4.2. Self-tallying

The tally of the ballot is done by each voter without any help. In the first round, each voter
chooses a private key and in the second round, the corresponding public keys are combined in a
way that the random values get immediately cancelled after the voting round, thus revealing the
tally. The zero knowledge proofs ensure that the participants followed the protocol.

3.4.3. Fairness

Thank to the commitment round, a voter first has to choose their vote and commit themselves to
this choice. By publishing this commitment before sending the vote, the voter is no longer able
to change their choice afterward. The vote itself is only published once the commitment of each
participant is received. So, it is not possible to compute a partial result before voting, thus, the
protocol is fair.

3.4.4. Dispute-freeness

This property is ensured through the public authenticated communication channel. An attempt
to send multiple votes from the same participant would be detected. Moreover, a zero knowledge
proof allows to verify that a vote is valid and does not contain an illegal content. On the other
side, the self-tallying property ensures the correctness of the result.

3.4.5. Robustness

Thank to the recovery round, a denial of service attack, in which a participant refuses to publish
their vote, can be avoided. Even if this happens, the mentioned round can be used to cancel the
participation of this voter, and allows to compute the result anyway.

Chapter 3. Protocol to Implement 23

4. Graphical User Interfaces

The graphical user interfaces (GUI) are very important for almost all types of applications. It is
the part the user is confronted with. So, it is crucial that these interfaces are comprehensible and
easy to use. Since multiple examples showed that security and usability do not mix well, a part of
this thesis was dedicated to this subject in order to avoid this widespread deficiency and to obtain
usable interfaces.

As it was already said, another student was doing a similar thesis, however with another crypto-
graphic protocol. So, it was decided that the user interfaces study and implementation would be
done together. This chapter describes the observations made.

4.1. Findings of the Study

Roles The first finding of the study was that there are two roles for a boardroom voting applica-
tion. The first one is the administrator role. This member of the group has to define the vote and
its properties, like the question, the choosable options and the people belonging to the electorate.
This person also has to manage the flow of the process, since someone has to decide when to start
and when to end the voting period. The second role is the voter role. All other members of the
group just want to participate to the vote. They do not have anything special to do other than
vote. The separation of these roles can also be used for the integration of a business case. Indeed,
a possibility would be to ask the user of the application to pay for the administrator functionalities,
while offering the voter functionalities for free.

Sometimes, the administrator could also want to vote, sometimes not. This means that under
certain circumstances there are components used by both the admin role and the voter role. In
order to save work, these common components should only be implemented once and used by both
roles.

Review screen In the boardroom scenario, there is no trusted party, not even the administrator
of the vote. This implies that the voters must be able to control if the admin sets up the vote
correctly. For this reason, it is necessary to provide a review screen where each voter can accept,
or not, the content of the vote (question, options and electorate). This allows a voter which
disagrees with some point to manifest themselves. When someone does not accept the review, the
participants can talk together to solve the problem, since, in the case of boardroom voting, they
all meet together.

Since there is no trusted party, the content received is not trustworthy. The admin could send
different contents to various voters. In order to avoid that, a broadcast communication channel is
required in order that a message is received identically by all the voters. Boardroom voting offers

Chapter 4. Graphical User Interfaces 24

an additional protection against this type of attacks. Since all participants meet together, they can
ask each other to double check the content appearing on their screen. This point is particularly
important when receiving the vote properties, in other words in the review screen. This attack
could also be made on the protocol messages, but it is of less interest, since the values sent are
confirmed by the proofs required by the protocol.

Flow During the study, it was found that different steps are necessary in the flow.

e Vote setup: the vote setup is the step where the administrator can create a new vote and
define its properties. They should be able to do it during the meeting or before the meeting
and save it, in order to reuse it later.

e Network setup: the network setup step must be done during the meeting since it is dependent
of the location. In this phase, all voters join a network where they can communicate together.

e \oting process: the voting process includes the review process of the vote that was mentioned
earlier, the voting period, the tally and the displaying of the result.

e Archived votes: the user should have the possibility to display the result of a vote done
earlier.

All these steps seemed to be necessary for a usable and secure boardroom voting application.

4.2. Obtained Interfaces

Regarding the points mentioned in the previous section, following storyboards were developed.

Vote setup The first screen shown is the view A visible in figure 4.1 (numbered arrows are
jumps to other figures). On this screen, the user has to choose their role. Either they are a simple
voter and want to join the electorate of an already set up vote (first button) or they want to be
administrator and want to create a new vote (second button). The third button allows to access
the archived votes as this will be discussed later. If the user chooses to be an administrator, view
B is displayed. There, they can either choose an already set up vote or create a new one. When
choosing one of these options, view C is shown where the vote's properties can be defined. There,
the admin can choose to save the vote in order to reuse it later, or to start the voting process for
the selected vote.

Network setup When a user chooses to join the electorate of an already set up vote or when
an administrator chooses to start a voting process, view D is displayed as shown in figure 4.2.
When accessing this view as administrator, the two buttons in the middle are not visible, since the
administrator has to create a network group and not to join one. So, the admin can choose to use
the wireless network to which their device is currently connected, or choose another network in
the advanced network settings (view E). There, they can also decide to use the hotspot included
in their device. By choosing one of these options, a group is created on the network to allow the
devices of the voters to communicate together. For security reason, this group should be joinable
for only allowed people in order to reduce risk of attacks. So, a secret must be defined and required

Chapter 4. Graphical User Interfaces 25

MobiVote MobiVote MobiVote

Available votes Question of the vote:

What's the best ski resort in Switzerland?

(1 Votes Options
Join elecotrate /

/ What's the best ski resort in A Adelboden
e

e ——————.

Switzerland?

v
e v |

v

(+]

Votes

What's the prettiest color? Flims-Laax

Grindelwald
| Save ‘ I Cancel ‘ Start this vote : @
T /

N _/

Votes archive

i |

<M

Figure 4.1.: Setup of the vote

when someone wants to join this group. This secret is fixed by the admin and displayed on the
admin’s device in view F.

In this view, the user also has to indicate their identification, i.e. the name they want to be
displayed on the device of the other participants.

For the voter, the process on these screens is a little bit different, since they do not have to create
the group but to join it. One solution for that is to choose a network and indicate the secret defined
by the administrator. Another possibility is to scan a QR-code or read an NFC tag containing the
secret and provided by the admin. Other possibilities could also be imagined.

MobiVote MobiVote

®_9 Network Setup Select Network Network is now Ready

|

My identification I
[Toe | | Network to use Network Name: Network 1

Network Password: Secret
((l)) Network 1
Scans a QR code containing the

network parameters (not visible ((l)) Network 2

((I’) Network 3

Scans a NFC tag containing the Scan NFC Tag R
network parameters (not visible)
if admin) L, Create new network
Advanced Network Configuratin
Back L ’;ecrjate NetonI ’7 Next —I
/
/ A

L L
D O
Vote administrator Vote Participant

Figure 4.2.: Setup of the network

Displays QR Code using the
"Barcode Scanner" App

Writes the network
parameters on an NFC
token (only on NFC capable
devices)

Voting process Once the network set up, view G from figure 4.3 is displayed on the admin’s
screen. There, the participants connected to the group are listed. The admin can choose which of

Chapter 4. Graphical User Interfaces 26

them they want to include in the electorate. Once this done, view H is displayed which is nothing
else than the review screen that was mentioned in the previous section. On that screen, the admin
must wait until all members of the electorate have accepted the review. Then, the administrator
can start the voting period. If the admin is contained in the electorate, the voting interfaces are
displayed (described later), otherwise the admin lands on a screen (view |) displaying the state of
the voting process. On this view, they can manage the voting period, for example decide to cancel
it or to end it. Normally, the voting period automatically ends when all participants have voted,
but it can happen that, for some reasons, a voter does not submit their ballot. In such a case, the
admin can decide to end the voting period.

RC) -® ?J@

MobiVote MobiVote MobiVote
Electorate What's the best ski resort Running vote
oO— in Switzerland?
Participants Participants Options Participants
Adelboden
* Joe v 1 Joe _i 1 Joe M
* M « Titlis
Alice N
1 Alice “ Flims-Laax L Alice g
L Bob O
k | Grindelwald C .
ast Votes: 1 of 2 _)®
AN
Next LF P Back —‘ ’7 Start ﬁ \f\cel voting peﬂ \jop voting periﬂ—%}
/
~N—

Admin can exclude people from
the electorate

b <4 If admin does not belong to electorate]
®
If admin belongs to electorate

Figure 4.3.: First part of voting process for the administrator

For the voter, the first part of the voting process is slightly different than for the admin. Once
connected to the group, view J (figure 4.4) is shown to the voter where they can see all participants
connected to the network and which are selected as member of the electorate. When the admin
has finished choosing them, view K, the review screen is shown. There, the voter has to indicate
if they agree with the content of the vote or not. When everybody has accepted it and the admin
decides to start the voting period, the voting interfaces are displayed.

The voting interfaces consist of two views. The first one (view L in figure 4.5) is the voting screen
where each member of the electorate can choose the desired option. If the admin voted, they are
redirected to view | described before, all other voters then sees view M displaying the progress of
the voting process. On this screen, the voter has to wait until all voters have cast their vote or
the admin decides to end the voting period.

Result and archived votes When the voting period ends, the tally process can begin on each
device. Once finished, view O (figure 4.6) is displayed showing the result of the vote. On this

Chapter 4. Graphical User Interfaces 27

finished defining the electorate

—0 —®

MobiVote MobiVote

Automatic transition when admin }

What's the best ski resort
in Switzerland?

A 4

@_9 Electorate

Participants Participants Options
« Adelboden
. Joe . Joe I

« Titlis Automatic transition when admin

x Alice M . Alice - starts the voting period
« Flims-Laax

L | e

/ I]J « Grindelwald

[®

Read-only view of the people in
the network and who is
allowed to participate RIER

AN

User indicates that the vote is
set up correctly

Figure 4.4.: First part of voting process for the voter

screen, a vote can be copied in order to run it again. When leaving this screen, the list of all

previously run votes is displayed (view N). This view can also be directly accessed from the main
screen.

Chapter 4. Graphical User Interfaces 28

-©

MobiVote

MobiVote

What's the best ski resort

in Switzerland? ﬁ
==

Thanks for voting!
Waiting for votes...

Options

Adelboden

Titlis

Flims-Laax

Grindelwald

Cai:l,

1 Joe m
* Alice g

Cast votes: 1 of 2
[LTEEEET

©

Only if the voter is the administratorJ

stops the voting period or all

Automatic transition when admin
votes cast

Figure 4.5.: Second part of voting process

MobiVote

Archived votes

Who should win
the World Championships?

Who should be
the next chairman?

What is the solution
to our problem?

Lo

MobiVote

What's the best ski resort

in Switzerland? O,

Options

Adelboden

Titlis

Flims-Laax

Grindelwald

Done Export Redo vote
/ \

©)

[Creates an empty copy of the vote]

and restarts voting process as
administrator

Figure 4.6.: Votes archives

Chapter 4. Graphical User Interfaces

29

5. Benchmarks

The implementation of the protocol described in section 3 and of the user interfaces described in
section 4 allowed to evaluate them. This chapter describes the results in term of usability for the
GUI and in term of efficiency for the protocol.

5.1. Graphical User Interfaces Benchmarks

The user interfaces were tested by people with various backgrounds. The first tries were not very
good and modifications had to be made, resulting in what was presented in the previous chapter.
What these usability tests showed is that making a too big separation between the admin role
and the voter role is not a good idea. The first version had two different applications, one for
the admin, the other for the voter. During the tests, most of the people did not know which
application to use. Having two was confusing.

Another idea in the initial version was to have separated flows for the network configuration and
for the voting process. First, the network had to be set up, and then the vote. This also was a
bad idea since the testers always wanted to vote before configuring the network. That showed
that the users were not aware of the necessity to set up the network. Thus, this part had to be
moved somewhere else in the flow in order to force the user to care about it.

Once these flaws corrected and some other details adapted, the testers understood quite well how
the application works.

The user interfaces were designed independently of a crypto protocol. The goal was to obtain
a generic GUI usable for several protocols. At the time when the usability tests were done, the
cryptographic part was not already implemented. The usability testers did not complain that
the user interfaces were too complicated. The implementation of the protocol did not require
major changes in the GUI. This means that the addition of the security layer could be done in
a completely transparent manner, so without making the user interfaces more complicated. Two
different protocols could be implemented using this GUI. So, this work proves that security and
usability can be obtained together if enough time is spent on studying how to do it. The key
point in this project that allowed to obtain this result was probably that the user interfaces were
designed first, without caring about a specific crypto protocol.

5.2. Protocol Benchmarks

The most computationally heavy part of the protocol described is the tally process. As it stands
in the protocol description in 3.2.5, the tally uses a homomorphic process to recover the result of

Chapter 5. Benchmarks 30

the vote. In the mentioned section, one also observes that there is a discrete logarithm that must
be computed. For that, two solutions could be used: first, use a discrete logarithm computation
algorithm like baby-step giant-step, second, list all the possible results for the vote and check if
one equals the result obtained by the protocol. The first solution is not appropriate when using
the Baudron et al method for the representation of each option (see 3.2.8). With this encoding,
a lot of values can be encoded, but most of them do not represent a valid vote result. So, the
baby-step giant-step algorithm would check a lot of value that do not represent a valid vote result.
So, this algorithm is not efficient for this case.

The other solution lists all the possible results for a vote. If there are o options and p participants,
the sum of the votes each option received must be equal to p (assuming blank ballots are not
allowed or proposed as an option). So, permutations of length o where each position can take
values 0 to p and where the sum of all positions is equal to p are allowed. The number of such
permutations can be computed with following formula:

o+p—1
o—1

A graphical representation of this function gives:

participants
6

2 4
80000

60000

permutations

40000

20000 |

options

Figure 5.1.: Graphical representation of the complexity of the tally process

As one can see, the complexity grows heavily when the number of options or the number of partic-
ipants increases. The standard method to compute the result would be to take each permutation
representing a valid vote, to encode it as a vote v, and to compute a modular exponentiation g
(see 3.2.5 and 3.2.8 for the details of the tally process). So, the number of modular exponents
grows heavily when the number of options or the number of participants increases.

A more efficient way to compute this result is to make some precomputations allowing to transform
the modular exponentiations in multiplications. The idea is to compute g" for all v representing

Chapter 5. Benchmarks 31

a basic permutations containing 1, 2, 3, ..., up to p votes for each option independently. In this
method, o-p multiplications are required for the precomputations and then a simple multiplication
replaces the mod exp needed in the previous method. This is a good improvement, but the app
still does not allow arbitrary big numbers of options or participants.

The concrete performance of the tally process depends on the device. However, one sees that
this protocol, when implemented with the tally solution presented here, is usable for most of the
common use-cases in boardroom voting.

Chapter 5. Benchmarks 32

6. Summary

The protocol described in the publication titled A Fair and Robust Voting System by Broadcast is
achievable in practice. However, the tally phase is the bottleneck of this concept. An improvement
on that part would be a benefit.

Concerning the security aspects, the protocol considers most of them. However, with the threat
model used here, a real implementation should run on devices equipped with a secure platform in
order to stay secure.

Usable user interfaces are realizable even when security is involved in the project. It however
requires some reflection and investment of time to obtain something satisfactory.

Chapter 6. Summary 33

Part II.

Practice

34

7. Organization

The present master's thesis is a graduation project in Computer Science for the Master of Science
in Engineering studies at the BFH (Bern University of Applied Sciences). For this project a time
frame of 720 hours was planned, which corresponds to a master’s thesis of 27 ECTS. The start
of the thesis was the 16th of September 2013 and the deadline is the 7th of February 2014. This
chapter presents the planning that was foreseen for the project.

This project was formed of three main parts. One of these was the creation of the user interfaces.
The other part was the implementation of the protocol. Added to these two parts, there was
a third one consisting of the addition of the network layer. As mentioned in the introduction,
another student was working on a similar project. He was also asked to develop an application for
boardroom voting, however using another cryptographic protocol than the one presented in this
document. Since we knew that the final product would be quite similar in the look and feel, it
has been decided that the user interfaces part would be done as a joint work. The user interfaces
flow was already designed in a previous project by the same students and has been discussed with
their supervisors. The next section describes the planning that was made at the beginning of the
project. In the following section the real progress is described and commented.

7.1. Planning

The user interfaces (Ul) task was planned to be done at first. This provided the advantage that,
when implementing the protocol, there was already Ul available to test it. An other advantage
was that the Ul were not created in a hurry at the end of the project when there was no more
time left, as it is often the case in computer science projects. Doing that at the beginning of the
project increased the quality of the usability of the application. This task included Ul creation,
making usability test with people not involved in the project and testing of the Ul.

For this first phase, it was planned to simulate the network layer. In a second phase, the real
network layer had to be added to the application. This task included the integration of an existing
network layer, the addition of some security concepts needed by the protocol and the testing.

The third phase consisted of the implementation of the crypto protocol. The first subtask was
the adaptation of the Ul architecture to integrate the protocol architecture. It was followed by
the implementation of the cryptography required within that protocol. This phase ended after
testing.

In addition to these three main phases, there was an overall testing task whose goal was to test
the integration of the results of the different phases. There also was the reporting task to produce
the expected documentation.

Chapter 7. Organization 35

There were three milestones corresponding to the three main parts of the thesis. For the user
interfaces, it was planned to have them at the end of October. One week later the network layer
was planned to be implemented, since it was developed in parallel with the user interfaces. The
third milestone was the end of the implementation of the protocol at mid-January, letting some
time for the load tests and the documentation.

Figure 7.1 shows how much time was planned for these tasks.

Month | Sep. October November December January Feb|
Week |1 |2 |3 |4|5|6 |7 8[9 1011|1213 [14|15|16 17|18 19

Phase 1 : User interfaces
Ul flow
Usability tests
Testing of Ul
Phase 2 : Network layer
Add network layer
Security of network layer
Testing of network layer
Phase 3 : Protocol implementation
Preparation of protocol flow
Implementation of cryptography
Testing of protocol
Overall testing
Documentation

Figure 7.1.: Expected planning

7.2. Realization

Figure 7.2 shows how the working time was spread over the task. One can see that the creation of
the Ul took a little more time than initially planned. This can be explained by the major changes
that were done after the first usability test.

The network layer implementation also took more time than expected because of the change of
network layer, as this will be described in more detail in a next chapter.

For what concerns the implementation of the protocol, it took less time than estimated. This can
be explained by the fact that a crypto library could be used, providing some already implemented
building blocks. This resulted in the fact that an additional task, namely the implementation of
a basic verifier allowing to check if the protocol ran as expected, could be realized. Moreover,
in the last week, a trip to Darmstadt could be organized where discussions took place about the
realization of the boardroom voting application mentioned in the related work part of section 2.

The overall testing phase was beneficial especially for the load test that could be done that revealed
some bugs invisible with only few devices.

Chapter 7. Organization 36

Month | Sep. October November December January Feb|
Week | 1|2 | 3|4|5,6|7|8|9(10|11|12[13/14|15/16/17[18 19

Phase 1 : User interfaces

Ul flow

Usability tests

Testing of Ul

Phase 2 :|Network layer

\Add network layer

Security of network layer
Testing of network layer
Phase 3 :|Protocol implementation
Preparation of protocol flow
Implementation of cryptography
Testing of protocol
Implementation of verifier
Overall testing

Documentation

Figure 7.2.: Effective work

7.3. Source code

The source code of the application is available on Github®. The main project has dependencies
on different library projects. Table 7.1 lists the links of the repositories and the branches to check
out.

Project Repository link Branch
Voter App https://github.com/jritter/VoterApp hkrs12
AllJoynLib https://github.com/jritter/AllJoynLib master
ZXing https://github.com/jritter/ZXing master
MobiVote Verifier https://github.com/vonbp3/MobiVoteVerifier master

Table 7.1.: Source code repositories

thttps://github.com/

Chapter 7. Organization 37

https://github.com/jritter/VoterApp
https://github.com/jritter/AllJoynLib
https://github.com/jritter/ZXing
https://github.com/vonbp3/MobiVoteVerifier

8. Specifications

For the real implementation of the application, some choices had to be made. Some other require-
ments had to be fixed. This chapter lists these specifications and gives an overview of the tools
used during the implementation.

8.1. Requirements for the Application

As mentioned before, the main goal for this project was to build an application for mobile devices
implementing the protocol described in the paper "A Fair and Robust Voting System by Broadcast”.
So, the resulting app had to allow a boardroom! to carry out a vote in a spontaneous manner
without having to set up any infrastructure.

A choice had to be made for the development platform. Android was chosen. The reason for
this choice is that the programming language on Android is Java and the student already had
knowledge of this language and of Android programming. Furthermore, programming for Android
does not require a developer license. The application had to be compatible with smartphones and
tablets.

This application had to satisfy the common requirements for secure e-voting. The protocol imple-
mented takes care of most of them. In particular, this protocol is verifiable, which means that each
voter can verify that all other voters followed the protocol. Currently, if one looks in the Play Store
of Android one will find some apps allowing to vote, but these apps do not necessarily respect
e-voting requirement and especially not verifiability. The application developed in this project fills
this gap.

By choosing smartphones and tablets as target devices, the threat model described in the first part,
namely the assumption that the devices running the application are secure, is no more applicable
to this setup. Android smartphones and tablets are not secure in term of display and keyboard.
So, the threat model had to be adapted by considering the risk coming from the device as out of
scope.

It was expected that the application allows a group of people to be able to vote (yes or no votes),
or to carry out an election, with up to 25 participants, which is a quite big size for a normal
boardroom. The voter had to be able to choose 1-out-of-n options proposed as response.

In order to allow the devices to communicate to each other, wireless local area network (WLAN)
had to be used. This does not necessarily mean an access to the Internet but this implies to be
in proximity of a wireless hotspot. If none is available, the built-in hotspot of one device can be
used.

1By boardroom not only boardrooms of directors in a company are meant, but every type of group that should
want to carry out a vote.

Chapter 8. Specifications 38

This last mentioned requirement implies that all people participating in the vote must be present at
the same location, since a WLAN network is location bounded. This requirement can be considered
as an advantage for the implementation of the specific protocol. Indeed, proximity can be used as
secondary channel. So, this feature can be used to transmit some secret data (orally or visually)
and can also be used as control way in term of uniformity of the content received and exchanged
between the participants. For example, a participant of the vote can compare with their neighbour
if the content displayed on their devices is identical.

Another goal of this project was to develop an app usable for everybody, not only for specialists
of security. So, the app had to be designed in an intuitive way for the users, the texts had to be
easily comprehensible. Often, usability and security do not cohabit very well. This project had
to deal with that and to try to obtain the best result possible, keeping in mind that it was not
developed by usability specialists.

8.2. Tools Used

In this project, different frameworks and tools were used. This section gives a little background
for the most important of them.

8.2.1. Android

Android? is an open source operating system based on a Linux kernel designed for mobile devices as
smartphones and tablets. Some other devices like television sets, games consoles, digital cameras
or even cars also use this system. Android is currently developed by Google. It has a powerful
developer toolkit, which allows programmer to develop apps for devices equipped with this system.
The programming language used in the toolkit is Java.

Android is the most used operating system on mobile devices like smartphone and tablets (81.3%),
before iOS from Apple (13.4%) and Windows Phone from Microsoft (4.1%)3.

The system bases on five main building blocks.

1. Activity: an activity is a user interface. A single activity corresponds to a single screen. Each
activity has a lifecycle. An application mainly contains multiple activities. The definition of
the look and feel of an activity is defined through an XML file.

2. Intent: intents are system message notifying about events, for example hardware changes or
incoming data. Intent are also used to start activities or to send data through the application.

3. Service: a service runs in the background and does not present a user interface. A service
keeps running, independently of an activity. A typical example for a service is a music player,
which runs in background.

Zhttp: //www.android.com/
3Numbers from the third trimester of 2013. Source: http://thenextweb.com/mobile/2013/10/31/strategy-
analytics-android-smartphone-shipments-81-3-q3-2013-ios-13-4-windows-phone-4-1/

Chapter 8. Specifications 39

4. Broadcast receiver: an application can register itself to be notified in case of certain
types of events occur. This is done by broadcast receivers. The event can be local to the
application or public in the system.

5. Content provider: a content provider is an abstraction for data stored on the device and
accessible from multiple applications. An example is the content provider allowing to access
to the contacts stored on the phone.

8.2.2. InstaCircle

The crypto protocol implemented in this thesis requires a communication channel that is public
and authenticated in order to allow the participants to exchange messages. InstaCircle, an Android
chat application, was developed by Jiirg Ritter [8] in a previous project to allow Android devices
to communicate together in a public manner, what means that every participant sees all messages
sent in the group. InstaCircle implements such a public channel, and on it, bases a chat application.
It uses wireless LAN as network layer. So, this means that the devices that want to communicate
together must be connected on the same WLAN.

InstaCirlce works as follows: the first person that connects defines a password. A network group
is created. The other people that want to join the group must indicate the same password and
become participants of the group. The password must previously have been transmitted by the
creator to the other people on a secondary channel (orally for example). Once the group joined,
a participant can see all the messages exchanged, since the messages are transmitted over UDP
broadcast. The use of a password allows to have a control on who will join the group by giving
the password only to people that are authorized to participate.

In order to allow to have multiple groups on the same network, messages of one group are encrypted
with an AES key derived from the password of the group. If a message cannot be decrypted, it
means that this message was from another group.

InstaCircle also proposes more convenient ways to transmit the password. For example, it shows
up a QR-Code containing the needed connection data. It also provides an NFC functionality to
transmit these data. Another feature is to use the built-in hotspot of a device to create the
WLAN that is used for the message exchange. This allows to avoid to be dependent on a wireless
infrastructure. However, this solution limits the number of participants since the built-in hotspot
of mobile devices usually does not support a large amount of connections.

Finally, another functionality offered by InstaCircle is to recover messages if a user went offline
and comes back to the group. In such a case, the user can ask the members of the group to send
them the messages they missed. This recovery procedure is done over unicast.

As one sees it, this application provides a public communication channel, but it is not authenticated.
A user could try to spoof their IP address and indicate the one of another participant and then
send a message in their name. So, the authentication should be added in this project.

More information about this application can be found in the report of the project in which the
application was developed.

Chapter 8. Specifications 40

8.2.3. AllJoyn

AllJoyn is a widely used alternative to InstaCircle. The reason why both are presented here will be
given in a next chapter. AllJoyn* is an open source software developed by Qualcomm. It provides
an universal framework helping developers to set up an ad-hoc, proximity-based device-to-device
communication. Developers do not need to write their own code managing the connexion of various
devices together anymore. Alljoyn cares about that. Core building blocks of AllJoyn are: discovery,
connectivity, security and management of ad-hoc proximal networks among nearby devices.

AllJoyn is compatible with Android, iOS, Windows, Mac OS X and Linux. It supports connectivity
over WLAN, LAN, and also bluetooth on mobile device. AllJoyn runs in form of a daemon on
a device. This allows inter-process communication. AllJoyn implements a virtual bus connecting
multiple AllJoyn daemons. The daemon can be accessed in an application using the SDK.

AllJoyn works as follows: someone, let us call them the initiator, has to create a group and to give
a name to this group. The initiator's device will host the group. The group name is then advertised
on the network through multicast. Another device using AllJoyn can discover the groups available
on the network. If there is one, the device can connect to this group. The communication between
the devices connected to the group takes place over unicast transiting over the initiator hosting
the group. A message sent to the entire group first goes to the initiator, which transmits it to
each participant of the group.

If multicast is disabled on the network, the advertisement of the group name cannot be done. In
this case, developers can use a protocol called ICE. It consists on a Rendezvous server connected
to the Internet. The initiator can advertise the group name on this server (through the Internet).
Other devices can then consult this server and discover the group name. When someone connects
to this group, a path must be found between the peers in order to allow them to communicate
together.

In order to limit the number of groups visible on a network, each application using AllJoyn must
declare a so called well-know name. The advertising and discovering of a group is then limited to
this well-know name. Only applications using the same well-know name can see each other.

As mentioned earlier, in AllJoyn someone has to host the session. This means that if the host goes
down, the session is also destroyed. The initiator can also lock the group so that nobody can join
this group anymore. In addition, AllJoyn provides the functionality to detect when a peer joins or
leaves the group.

The AllJoyn framework also provides authentication and encryption using various protocols like
SRP key exchange, SRP logon and RSA key exchange.

8.2.4. Unicrypt

Within the context of another project, the e-voting research group of BFH developed a library
containing the most used cryptographic functionalities in e-voting. This library called Unicrypt
implements encryption schemes, signature schemes, hash schemes, proof schemes, commitment
schemes and other cryptographic building blocks from a mathematical point of view. Proof, hashes,
signatures, cipher or plain texts are all considered as mathematical elements. This orientation is

*In the Internet of Everything, AllJoyn Enables the “Internet of Things Near You™: https://www.alljoyn.org/

Chapter 8. Specifications 41

useful in e-voting because it allows to implement more easily cryptographic protocols that, most of
the time, base on a mathematical background. UniCrypt is written in Java. This library has been
used to implement the protocol in this project. The current version is still under development, so
this project was a test for this library.

Chapter 8. Specifications 42

9. Implementation

The main part of this project was the implementation of the protocol and the creation of the user
interfaces. Moreover, the networking layer had also to be put in place. This chapter describes the
architecture that is used in the app and comments the graphical user interfaces, the network layer
and the protocol implementation.

As mentioned earlier, a requirement to use this app is that all the voters are present at the same
location as this is usually the case for boardrooms. This requirement simplifies some common
challenges in e-voting. Indeed, some assumptions can be made out of this requirement. For
example, one assumes that the voters can talk together during the whole voting process, so a
voter can manifest themselves if something is not clear for them. Another assumption is that a
voter can ask their neighbour to show their device in order to check if they have the same content
or the same result on their screen. This simplifies considerably the process at least from the point
of view of the developer, because they have not to care about that in the implementation.

As this was already mentioned in the introduction, some work has been done as joint work by
the two students. This concerns the user interfaces and the network layer. Although there was
not a strict task separation, Jiirg Ritter worked more on the look and feel, the Wi-Fi connection,
NFC feature and QR-code, while Philémon von Bergen worked more on the Ul flow and the logic
behind, as well as on the communication layer. However, this was no strict task separation.

The resulting application was called MobiVote in order to create a relation to UniVote, an Internet
voting system for universities also developed in the e-voting group of the BFH!. MobiVote exists
in two variants. The first one is the product of Jiirg Ritter's thesis. It called MobiVote CGS97
in reference to the crypto protocol implemented. The variant obtained in the present thesis was
called MobiVote HKRS12 also in reference to the authors of the protocol used.

The minimum version of Android required to run MobiVote is version 4.0. This limitation is due
to the use of some functionalities that are only available since Android 4.0.

0.1. User Interfaces

This project was preceded by a preparation project where different tasks were done. Among other,
a first implementation of the protocol was done as proof-of-concept and a thought on the graphical
user interfaces was also realized. This chapter first presents the result that was obtained in this
preparation project, since it is what has been implemented at the beginning of this project. During
the development and after some usability tests, some modifications have been done to this first
version. The storyboard showed in chapter 4 is the final storyboard, so it differs from the one that

https://www.univote.ch

Chapter 9. Implementation 43

is presented in section 9.1.1. However, since some interfaces are similar, some information could
be redundant.

0.1.1. Initial User Interfaces

For the design phase of these user interfaces, various people sat together in order to have different
opinions and thus trying to obtain the best possible result. Both students implementing the app
and their supervisors were present. The goal was to design the Ul as usable as possible.

The first thought was to separate the role of vote administrator and simple voter. The administrator
has to set up the network configuration allowing the message exchange. They also have to define
the vote properties as the question, the proposed options and the electorate. They then can start
the voting period and must be able to end it. The simple voter only wants to be able to vote and
to see the result. In order to separate these two roles, it was decided to develop two different apps.
One, the Admin App, is used by the vote administrator and the other, the Voter App, is used by
the simple voter.

Some functionalities are used in both apps, as for example the voting functionality. The adminis-
trator, as well as the simple voter, often has the right to vote. For that, it was decided to create
library applications providing these functionalities that could be used by both apps.

The following figures represent the user interfaces of these different app and libraries. Figure 9.1
shows a part of the Ul of the administration app. Figure 9.2 represents a part of the voter's applica-
tion. Figures 9.3 and 9.4 are library applications providing voting functionalities and display result
functionalities respectively. The numbered arrows show transitions from a figure to another.

Admin App

When starting the administration app, it shows a welcome screen (A in the figure 9.1) containing
three buttons. The first one, Setup Network shows view B where the administrator can define which
network will be used and where they can configure the group credentials. Once these elements
have been defined, view C displays the connection information needed by other participants to join
the group. This can be done through a QR-Code or NFC. For the QR-Code functionalities, ZXing?
library was used.

Back to the view A, the second button allows to define a vote. View D shows a list of already
defined votes. It is also possible to create a new vote. When choosing this option or by clicking
on one vote in the list, view E is shown. There, it is possible to edit the question and the list
of options. Buttons allow to save or cancel changes. Another button allows to start the voting
period.

This last option moves on to view F. This screen lists the participants present in the group. The
vote administrator can select the participants they want to add or remove from the electorate.
When they click on the validation button, the vote is sent to each participant who can check if
everything is correct in a review screen (view G). If all the voters agree with the vote content, the
voting period can be started by the administrator.

2Zebra Crossing ZXing: http://code.google.com/p/zxing/

Chapter 9. Implementation 44

Two cases must be distinguished at this point: if the administrator is in the electorate, the voting
library application will be started and will allow them to vote (arrow no 1). If they are not in
the electorate, the app will show view H indicating the progress of the vote. When all the voters
have submitted their ballot, or when the administrator decides to end the voting period, the result
library app is launched to display the result. The fact that the administrator can end the voting
phase can be discussed. If they do it before the time fixed in agreement with the voters, these
could ask to cancel the vote. However, when a voter gets out of the network and do not submit
a vote, it is important for the administrator to be able to end the period.

Finally, the third button of view A allows to show archived votes. This functionality starts the
result library application (arrow no 3).

Voter App

The voter app starts with a welcome screen (letter | in figure 9.2) containing two buttons. The
first one allows to join a group. The second one allows to show the archived votes. A click on it
starts the result library app (arrow no 3).

If the user decides to join a group, they are redirected to view J where they can set their identifier,
choose a Wi-Fi network, and indicate the group password or scan the QR-code visible on the
administrator’s device.

Once connected, view K is displayed. The voter can see the participants connected to the group
and can check who is allowed to vote. When the administrator validates the electorate, a view L is
shown where the voter can check the settings of the vote (questions, proposed options, electorate).
If something is wrong, they can indicate it orally to the administrator who can change it if necessary.
If everybody agrees on the content of the vote, the administrator starts the voting period, what
results in displaying the voting library application on the voter's device.

Chapter 9. Implementation 45

91e.03293 03 S6UOJaq UIWPE J]

hﬁm_oﬁm_m 03 6U0|2q J0U S0P UIWPe JT

poLiad 6unon dois

[T
740 T :S910A 158D

N o1y 4
= o | ¥

sjuednied

N

9)0A Bujuuny

310AIG0W

AIJ VS

R / ~N / N @
S |
yes _ _’ Hoeg _ ya AN _ _’ yeg _ 910A SIy} peys [3dued _ anes 1_ E
| < |- T
PleM[apULID 2 0
~
plem|apu s o qog 4 xee-suwid s 40102 3591124d 3y S,3eYM m
-] Juapisaid 3xau ==
xee-swil4 s oy 4 a oy 4 SIIL s m_tnmn pInoys moH m
SIIL s 4 s puUBLRZIMG m
20(aor uspoqiapy |/ Ul 10S3J DIs 153q 3Y) S1eYM .
uapogopy | M o 4 V1
s230A
suondo uedionied \ sjuedpniled SICED
\ (PURLISZIMS U| 10531 IS 3524 33 S,1eYM
épuelaziims ul
puel - :310A 343 JO UORSAND $330 3(qe|IeAY
10sa1 1S 3599 3Y3 S,1eym
910AIq0W 9j0A190W 910AIq0W 310AIqOW

@‘

21e10309)2 3y}

wouy 31doad apnPxa ued ulwpy

(sa1Ap
3|qeded D4N uo Ajuo) uaxoy

D4N ue uo sisajawesed
HOMIBU DY) SAILM

19103S :plOMSSed YJOMISN
ddy ,Jauueds apodeg,,

ay3 Buisn apo) YO sAeidsiq

T 3IOMISN :dWeN YI0MIBN

Apeay Mou s| YlomiaN

g w

SIOMIDU MaU 23e31) dg
€ omdN Q—&
2 HoMIBN Qg
2 T HOMIPBN Q—a
y
asn 03 }4OMIdN

—]

SARLY [lod
©¢

————

sliod -

————

L’ somiaN dmas

3IOMISN 199|395

310AIGOW

310AIGOW

®—

310AIqOW

oO—

®—
ddy uonesnsiuiwpy

Interfaces of the admin app

Figure 9.1.:

46

Implementation

Chapter 9.

©

ﬁ

pouad Buijoa ayy syeys
UlWpe UdyYM uoRpIsuel} d1RWoINY

A32a.100 dn 395
S1 2J0A 3y 18Y) S2)eJIPUl JaSN

r—

=]

9jeddiued o) pamoje 14

SI OYM puE I0MIU Y}
u1 9jdoad ay3 Jo MIIA Ajuo-peay

ddy ,4auueds apoodieg,
Buisn siajowesed ylomiau ayy
Buluieuod apod Y e suedss

9pod WD ueds

domiau mau ajeal)

D

N

SAIYIY |1od

21e40393]3 Ulo[

plemj@puns s O Rom ﬂ
xeeq-swy|]
71-swild s - *) Iy *
SIALL s
—— s Ely * E s0r 4
suondo sauedpiied sjuedppled
¢{puelIazims ul
110s3J 1S 3599 BY3 S1eyM (€ SIsiopsl
910AIGO 9]0AIqONW

@‘

218401233 Y3 Buluydp paysiuy
UIWPe UBYM UORISURL) JRWoINY

€ }JoMIaN Qg
2 HomIBN Qg
T >0MBN Qg

3sn 03)40MIaN

}IOMISN 319913S

ELIET

awod|9M - Bunjoa-3

O—

ddy Jaj0/)

Figure 9.2.: Interfaces of the voter app

47

Implementation

Chapter 9.

Voting library app

The voting library app shows the question and the proposed options (view M in figure 9.3). It
allows the voter to choose one of the options. Once done, a progress screen is displayed showing
the progress of the vote (view N). When the voting period ends, the result library application is
called (arrow no 2).

If the voting library app was called by the admin app, it returns to it as soon as an option has
been chosen (arrow no 5).

Voting App ?
™

_ : ®
MobiVote MobiVote
What's the best ski resort Thanks for voting!
in Switzerland? @ Waiting for votes...
]
Options Participants
Adelboden 1 Joe m
Titlis 1 Alice g
Flims-Laax
Cast votes: 1 of 2
Grindelwald
(I]
Cast I

©

Only if the voter is the administrator]

Automatic transition when admin
stops the voting period or all
if admin)

Figure 9.3.: Interfaces of the voting library app

Result Library App

The result library app is composed of two views. The first one (view O in figure 9.4) consists of a
list of already completed votes. This view can be accessed from the main screen of the voter app
or the admin app (arrow no 3). When selecting an archived vote, it is possible to show its result.
The second view (view P) shows the result for the given vote. This view is also used to show the
result of a just completed vote (arrow no 2).

Chapter 9. Implementation 48

Result App Cj? ©)
O Lo

MobiVote MobiVote

What's the best ski resort

in Switzerland? O,

Archived votes Options

Who should win Adelboden

the World Championships?

Titlis

Who should be
the next chairman?

Flims-Laax

What is the solution .
to our problem? Grindelwald J

N __—

Figure 9.4.: Interfaces of the result library app

This was the storyboard that resulted from the first discussion and that was first implemented in
this project.

9.1.2. Modifications Done to Original Flow

During the implementation of the initial storyboard, a major problem appeared. When Android runs
an app, it gives it a context. This context is generally the Java package name of the application.
This context is used to store application private data. Only the app running with this context
can access these data. These data are composed, among other things, of the database of the
application. In MobiVote, the goal was to have only one database for the admin app and the voter
app, in order to be able to retrieve the archived votes regardless of the fact that they were run as
admin or as voter. But the problem was that the voter app and the admin app received a different
context when running and thus had both their own database. We (the two students) thought about
updating both databases with the content of each other. But this was not satisfactory because of
the problems that could result if an app is uninstalled. Asking the user to install both apps was
not very usable and could generate problems in case that one of them would be uninstalled.

Similarly, some usability tests proved that having two apps was not a good idea because the user
sometimes did not know which app to choose. So it was decided to switch to a single app, offering
both functionalities in a more understandable way and thus solving the database problem. Of
course, this modification took time and caused a delay compared to the expected planning.

Another significant change was the order of creation of the vote and the set-up of the network
communication. In the initial storyboard, it was planned that the user playing the administrator
role first sets up the network communication (with the first button on the main screen) and then
defines the vote (with the second button on the main screen). But usability tests showed that the
user did not care about setting up a network because they did not know the reason to do it and

Chapter 9. Implementation 49

thus directly did what they wanted to do: setup a new vote. So we decided to change a little the
flow of the administration process by first asking the user to define its vote and then ask them to
define the network.

For these reasons, it was decided to switch to a standalone app. So, the Ul flow had to be adapted.
The interfaces themselves did not change a lot, only the order of displaying them was adapted.
This new flow had significantly better results in usability tests, even if the interfaces themselves
did not change a lot. The result of this revision was already presented in chapter 4 and thus is not
repeated here.

9.1.3. Implementation of the Storyboard in Android

The implementation of these storyboards to concrete Android user interfaces raised a lot of ques-
tions and implicated some adaptations. This section describes some of them and the solutions
that were chosen. This section shows some screen captures of the final application to illustrate
the solutions that were implemented. The previously mentioned usability tests also showed a lot
of small details that were not satisfactory. They are also discussed here.

Position of the buttons As this was already mentioned, we made a first version and did some
usability tests with different people. In this first version, we implemented quite the same look and
feel as in the storyboard, so we placed the buttons at the bottom of the screen. We created a bar
at the very bottom of the view, where the texts of the buttons appeared. This bottom bar took
the entire width of the screen. When we tested it with other people, we noted that those who were
using a tablet did not see the button, because it was too wide. So, we had to change that. We
analyzed where we could place these buttons and noticed that we had two types of buttons: the
flow buttons used to manage the flow of the app (like next, previous, start voting period, etc) and
the action buttons (like save, cancel, cast, agree the review, etc). We found that action buttons
could be replaced in most of the cases by dialogs. For example, save or cancel buttons in the
vote creation screen could be replaced by a dialog asking for saving or cancelling when leaving this
screen. The flow buttons however could not be replaced by something else.

As we could remove the action buttons, we needed less space to display only flow buttons, so we
decided to put them in action bar on top of the activity, which is Android’s standard way to do
it. But this was not satisfactory on smartphones, because there was not enough space in the top
bar to display the activity title and the flow buttons. Since the bottom bar problem only appeared
on tablets, we decided to implement following solution: on smartphones we would display these
buttons in a bottom bar since it was not a problem on this type of devices in the usability tests,
and on tablets we would display them in the top bar, since we have enough space to show them
there (see figure 9.5 and 9.6).

Chapter 9. Implementation 50

e @

(% Vate setup

QUESTION

_What do you think about PhD Days

+ Allow blank ballots

OPTIONS
Very interesting =
Quite interesting -
Boring i
Really boring u
Blank vote

Enter the option here —I—

START VOTE

Figure 9.5.: Buttons at bottom on smartphones

P startvore

QUESTION

What do you think about PhD Days

[# Allow blank ballots

OPTIONS

Very interesting &
Quite interesting &
Boring &
Really boring g
Blank vote

Enter the option here _|_

Figure 9.6.: Buttons in top bar on tablets

Special buttons In addition to the buttons we just mentioned, we decided to add two buttons.
One is a help button displaying a dialog containing information about the currently displayed
activity. The other is a button allowing to display the network information like the network name

Chapter 9. Implementation 51

and the group credentials. The reason for adding this last button was that the user should be able
to show this information to a newly arrived participant even if the administrator has already closed
the view containing these data.

We also had to add a button allowing to go back, respectively to go in hierarchical reverse order
of the activities. The back button present on most of the Android devices allows to go in timely
reverse order. So, there is a flow of views and the user wants to jump over one when going back,
they cannot use the standard hardware back button. For this purpose, the standard Android way
is to transform the application icon in the top bar in a button allowing to go back to a predefined
activity declared as parent activity. This is the way we did it. It is also the reason why the hardware
back button and the parent button (the one we just talked about) sometimes does not have the
same behavior (see figure 9.7).

VOTES

What do you think about PhD &
Days

CREATE NEW VOTE

Figure 9.7.: Special buttons in top bar

Tablet layout Smartphones and tablets have different screen sizes. Moreover, a smartphone is
mostly used in portrait format since tablets are rather used in landscape format. So, some activities
have been designed differently in portrait and in landscape format in order to improve usability
and to be as compatible as possible with these types of devices.

Activity specific adaptations Some adaptations had to be made to specific activities. This
paragraph describes them.

Vote setup activity In the first study, we thought that the administrator should define all the
options they want to allow the voter to choose. But, when using the app, we noticed that it would
be helpful to be able to easily add and remove the blank option, as this could be used quite often.
So, we added a checkbox that allows to add and remove this option in one click (see figure 9.8).

Another problem that occurred in the usability tests was that people began to edit an option but
forgot to add it to the list by clicking on the "+" button. So, we added a check that if an option

Chapter 9. Implementation 52

is still being edited when starting the vote or leaving this activity, a dialog is shown to ask if the
option has to be added to the list.

- @

(&izd Vote setup

QUESTION

_What do you think about PhD Days
+ Allow blank ballots

OPTIONS

Very interesting =
Quite interesting &
Boring $
Really boring &

Blank vote

Figure 9.8.: Blank vote and "+" button

Network setup activity In this activity, the user has to specify an identifier (a name) that will
appear on the device of the other voters. In a first version, the default value was set by reading
the identity information configured in Android. In order to access these data, the app had to
request two permissions, namely READ_CONTACT and READ_PROFILE. This means that when
somebody wants to install the app, they have to accept that it reads the contacts stored on their
device and access to their personal information. These are exactly the permissions that people do
not like to give to an app because they do not know what the app will do with these data. For an
e-voting application, it can be suspicious to use these permissions. So, we decided to remove the
default identification feature in order to be able to remove these permissions. In the final version,
we check if the identification field is empty and notify the user if it is.

As mentioned before, a voter has four ways to join a group. The four possibilities were proposed
with four buttons (in the same order as described here). The first way is to use the Wi-Fi network
that is currently connected and to type in the group credentials. The second one is to scan a
QR-code containing these data. The third one is to scan a NFC tag and the last one is to connect
to another Wi-Fi network and type in the group credentials (advanced network config). When
testing the app, we noticed that the easiest way was to scan a QR-code. So we changed the
order of the buttons and put the QR-code and NFC buttons first, followed by the current network
button and finally the advanced network configuration button. This seemed to be the most logical
order.

The connection to a Wi-Fi network was quite a tricky part. There are lots of cases to handle. The
user can connect to an unsecured network, to a secured and already known network (the key is
known and saved in the device), to a secured but unknown network or even to a secured known
network but for which the key stored in the device is no more up to date. These are a lot of
use-cases. In the cases where the network is secured but unknown, a field where the Wi-Fi key

Chapter 9. Implementation 53

can be indicated must be displayed. In the case that a network is already known but its key was
changed since the last connection, the process will fail and the user will have to go to Android
Wi-Fi Manager in order to remove the not anymore used Wi-Fi key. All these use-cases had to be
managed in case of entering the group credentials manually and in case of scanning a QR-code or
reading an NFC tag.

There is one use-case more: if no wireless access point is available, the admin can use the built-in
hotspot of their device. So, they must be able to set-up a network indicating a name and a Wi-Fi
key.

Review activity The purpose of the review activity is to allow each voter to check if the content
of the vote and the electorate are correct. The voter has to accept it so that the administrator
can go to next step. First, the accept button was placed in the bottom bar / top bar, but most of
the time, people did not see it. So, we moved it in the electorate part, on the line corresponding
to the voter. So, the user had to click next to their name. But, because of esthetical reasons,
the button was not recognized as such. So, we finally transformed it in a checkbox. With this
solution, it was more understandable.

In the help of this screen, we had to indicate that, if a voter, for some reason, does not accept
the review, the administrator has to exclude this participant from the electorate in order to run
the vote. This information is also displayed when the admin tries to go to next step but not every
voter has accepted the review (see figure 9.9).

sl]

-

@ Vote review

QUESTION

What do you think about PhD Days

OPTIONS

Really boring
Very interesting
Quite interesting
Boring

Blank vote

PARTICIPANTS

E Nexus 4

E Galaxy Note v

Figure 9.9.: Review screen with checkbox

As this activity and the network configuration activity were not very understandable for the users,
we implemented help overlays that are displayed the first time these activities are shown. These
overlays contain arrows and small texts indicating what the user has to do in this activity (see
figure 9.10).

Chapter 9. Implementation 54

e @

(% Network configuration

@ Put your identification here...
... then choose a method to join the
oting session. (9

Touch the screen to close this help

(—

Figure 9.10.: Help overlay

Vote activity When voting, the voter should always have to do it in two steps in order to confirm
their choice and not accidentally choose something they did not want. In the first implementation,
they had to choose an option with a radio box and to confirm the choice with a button. But since
we removed all action buttons, this button was also deleted. So, we had to find another way for
the user to confirm their vote. In the final version, a dialog is shown when the user chooses an
option, asking them to confirm their vote.

Wait for incoming votes activity In the activity where the admin is waiting that each voter casts
their vote, they have the possibility to end the voting period in case a participant does not submit
their vote. Another functionality was added allowing the admin to cancel the vote, if something
goes wrong.

Result activity In order to improve the readability of the result, we decided to add a pie chart
showing the result in form of a picture. Therefore, a library called AChartEngine3 was used. We
also added some information to this screen, namely the number of people in the electorate and
the number of ballots submitted. We also decided not to show the members of the electorate in
this screen, because this is not a property of the vote itself but depends from the setup. Just after
the voting period ends, one still knows who was in the electorate, and if one consults the result
afterward, the interesting point is the result and not the electorate.

It can happen that a member of the boardroom comes too late to the meeting and the voting
period was already started. In such cases, the administrator can end the voting period, thus
showing the result screen. Then they may like to start the vote again. This is possible with the
repeat vote button. This action only copies the vote and shows the vote editing screen in order
to allow the administrator to start it again. This button is only visible by the administrator and
just after the voting period ended (see figure 9.11).

3http://www.achartengine.org/

Chapter 9. Implementation 55

(!EFBJ Vote result
QUESTION

What do you think about PhD Days

RESULT CHART

Guite interesting Very interesting

OPTIONS

1 ballot

Very interesting e

1 ballot

Quite interesting 0%

: 0 ballots
Boring 0.0%

 REPEATVO. ¥ EXPORT

Figure 9.11.: Result screen with pie chart and "repeat vote” button

When accessing to this screen through the archives, a similar button is shown, this time not only
to the administrator, allowing to copy the vote, in order to run it with another group. A typical
use-case for this feature would be the professor who does a poll with a class of students, and would
like to repeat the same poll with another class without having to redefine the entire poll.

Another adaptation is the addition of the Export button. The protocol is verifiable, so someone
would maybe like to have the possibility to verify, after the voting process, if everything worked
correctly. This could be done by an external verification software. So, there must be a possibility
in the app, to export the values generated during the protocol run. This button offers this feature.
It exports the protocol values in an XML file, which can be used in an external verifier.

General adaptations Some more general adaptations were also done after the first tests. For
example, error messages were sometimes shown in toasts (small text appearing at the bottom of
the screen) and sometimes in dialogs (overlay window that must be closed with a button). We
finally decided to use toasts for informal errors that do not need the vote to be interrupted, like
the case of a voter who wants to connect to a group but forgot to indicate their identification.
Dialogs are now used for critical errors or information that require the vote to be interrupted such
as when an attack is detected on the network. Dialogs are also used for questions, since there
must be at least two buttons (yes and no) to answer the question.

Another adaptation of the first version is the title of the activities. Initially, the title of the activity
was the name of the application. In the activity, we then displayed a title describing what the user
has to do. We however noticed that these titles could be placed in the activity title (as this is

an Android standard) and this would offer a gain of space in the activity itself. That is what we
did.

Chapter 9. Implementation 56

09.1.4. Other Features

Other features were also included in the application. For example, there must be a way to detect
network or group connection loss to avoid that the user waits for messages they will never receive.
There can be various reasons for a connection loss: Wi-Fi out of range, device problem, group
no more existing. For all these cases, we had to register elements that can be notified if such an
event happens, in order to be able to notify the user that something went wrong.

9.2. Communication Layer

In order to allow devices to exchange messages, there must be a communication layer. For this
application, it was decided to use wireless LAN as network layer. But this is not sufficient since
devices connected on the same network do not necessarily know each other and thus cannot com-
municate together. This was the reason for using InstaCircle or AllJoyn. These frameworks allow
to create a group of devices knowing each other and make it possible for them to communi-
cate together. They also limit the communication between the members of the group, so that
other devices connected on the same network but not member of the group cannot listen to the
communication.

The first thought was to use InstaCircle and replace the chat application built over it by the voting
application. However, there was a problem with it. For an unknown reason, on some networks,
a big percentage of the messages got lost for some of the participants while on other networks it
worked reliably. This problem was already discovered in a previous project and a resend mechanism
was implemented but it was not satisfactory. However, since we did not have another variant at
the beginning of the project, a first partial implementation was done with InstaCircle.

During the first phases of the project, one of the two students came upon the website of AllJoyn.
By studying it thoroughly, we found out that it could correspond to our need. So, we decided to
make a try with AllJoyn. A first partial implementation could be set up quite easily. It worked
much more reliably. Since InstaCircle still had some missing functionalities as did AllJoyn, we
decided to implement them on the most reliable one: AllJoyn. However, some functionalities from
InstaCircle were kept, like the WLAN management or the logic of transmitting the network group
credentials.

The functioning of AllJoyn was already described in the specifications section, but we repeat it
here since it is important for the understanding of this section. AllJoyn works as follows: someone,
let us call them the initiator, has to create a group and give a name to this group. The initiator's
device will host the group. The group name is then advertised on the network through multicast.
Another device using AllJoyn can discover the groups available on the network. If there is one,
the device can connect to this group. The communication between the devices connected to the
group takes place over unicast transiting over the initiator hosting the group. A message sent
to the entire group first goes to the initiator which transmits it to each participant of the group.
In order to limit the number of groups visible on a network, each application using AllJoyn must
declare a so called well-known name. The advertising and discovering of a group is then limited to
this well-known name. Only applications using the same well-known name can see each other.

As seen before, the initiator must define a group name. The only restriction is that it must start
with a letter. So, the initiator could define a group name related to the vote. This can be helpful

Chapter 9. Implementation 57

in order to identify the group more easily, but this implies that the people wanting to join the group
have to type the group name in their device. Moreover, this reveals some information on the vote
over the whole network. So, in order to increase usability of the app, we decided to automatically
create a group name of the type "group” followed by a number, where this number starts at 1
and is incremented for each new group created on the same network at the same time. So, this
solution allows people that want to connect to this group to only type in the number of the group,
and the rest is added automatically. This is more practical for the user and more secure since an
attacker does not know what is done in this group.

The implementation of this network layer was based on an example provided with the AllJoyn
framework. By reusing this code, it was quite easy to implement a working product. However,
there were missing functionalities like all the security aspects and the support of participants’
well-known names. These features had to be implemented on top of the example code.

9.2.1. Security Assumptions

As one can see in the functioning of AllJoyn, the communication is no more completely public
since it is done by unicast. The protocol however specifies that the discussion must be public in
order to satisfy the dispute-freeness property. In order to solve this problem, one has to assume
that AllJoyn is trustworthy. One has to trust that when somebody wants to send a message to
all group members through AllJoyn, AllJoyn really transmits the same message to each group
member. Such a trust assumption can be done relatively easily since AllJoyn is a widely used
framework for peer-to-peer communication.

Another assumption that must be done that applies as much for the network layer as for the
protocol and the entire app is that there is no malware installed on the device. If there is one,
one has to assume that it has total control over the device and that it can do what it wants,
from tricking the user by showing modified user interfaces to interacting in the cryptography. The
adopted threat model however considers this as out of scope.

9.2.2. Possible Attacks

The network layer is a sensible level since different attacks could be achieved, like denial of service
attacks or injection attacks. This section describes some attacks that could be carried out and
presents the solutions implemented to avoid them.

As it was described in the functioning of AllJoyn, the group name is publicly advertised, so every-
body that is connected to the WLAN on which the group was created and knowing the well-known
name used by the app is able to connect to this group. This allows an attacker to easily connect
to a group and participate to the communication, injecting whatever they want. In order to avoid
that, it was decided to encrypt the messages exchanged in a group. For that, symmetric encryption
was used. Therefore, a key known by all official participants was needed. This is done in form
of a password. The initiator of the group generates a password and transmits it through another
channel (visually or orally for example) to all other people that are allowed to connect to the group.
This can be done thanks to the fact that, in boardroom voting, all the voters are present at the
same physical location. So, they can communicate together on a different channel than over the
network. From this password, a symmetric key is derived for the encryption and decryption of

Chapter 9. Implementation 58

the transmitted messages. An attacker should not have access to the password. This would not
prevent them from connecting to the group, but from listening and injecting messages since not
decipherable messages are simply ignored by the participants.

The password mentioned here must be defined by the administrator. In order to make it more
usable, it was decided to generate it automatically. This also allows to ensure a certain security
level. However, it must be kept in mind that people that want to connect to the group must
type in the password. Of course, when the user scans the QR-code or reads an NFC tag, they
do not have to type it in. But this chapter focuses on the fact that it can happen that a user
has to type it in. So, for usability reasons, it was decided to only use lowercase letters in order to
avoid that the user must switch the keyboard many times (number, uppercase, lowercase, special
chars are not visible on the same keyboard on a smartphone). This also avoids confusion of some
chars (uppercase o and number 0). In order to have a correct security level, it was decided to use
a length of 10 chars, which corresponds to a security of 47 bits. Today, the minimum strength
requirement to avoid brute force attacks is 80 bits. However, since a vote lasts maximum one
hour, the brute force attack time is limited. So, for this application 47 bits are sufficient.

An attacker that really wants to integrate the group could however try to built a rainbow table
and find the symmetric key derived from the password. This problem can be solved in various
ways. The first one would be to declare a static salt in the code. This would force the attacker to
compute a rainbow table only for the present application. In this case, a high number of iterations
in the key derivation process should be used in order to slow down the creation of the rainbow
table. But this is not the best solution since it does not completely avoid the creation of such a
table. Moreover, the derivation of the key in MobiVote would take much time and thus limit the
usability of the app. Another solution is to use a dynamic salt different for each voting session.
This would require that the attacker computes a rainbow table for one session. Since such a session
does not last more than one hour, it is not possible to compute such a table in such little time.
Even more, this allows to reduce the number of iterations needed in the key derivation process,
thus accelerating the application. This is the solution that was implemented, since it is secure and
fast.

This solution however requires the transmission of the salt to the participants that want to connect
to the group. A salt is too big to be typed in, so it must be transmitted in another way. A salt is
not a secret so it can be transmitted over the network. That is the variant that was chosen. When
a new participant joins the group, the initiator sends the salt. This message cannot be encrypted
since the salt is needed to the new participant to compute the decryption key. Since everybody
can connect to the group, an attacker could try to send a wrong salt before the initiator is sending
the correct one. This would result in a denial of service attack because the participants would
encrypt their messages with different keys derived with different salts.

A first thought to solve this problem was to encrypt the salt with the password and a hard coded
salt. So, an attacker who does not know the password could not send a wrong salt. However,
since the salt is hard coded and thus publicly known, the attacker could build a rainbow table for
this first message. When receiving the encrypted dynamic salt, they could use their rainbow table
to decrypt it. So, they would find the password and could decrypt the dynamic salt. Thus, they
would be able to encrypt and decrypt messages and participate to the group discussion. So, this
solution is bad and cannot be used.

Another solution is to transmit some chars identifying the correct salt to the new participant over
a secondary channel. So, when they receive a salt, they can check if it is the correct one. This

Chapter 9. Implementation 59

secondary channel is already used to transmit the password, so it would be possible to add some
chars to this password. The user would only have to type some more chars. The easiest variant
would be to take the 3 first or last chars of the base 64 encoded salt and add them to the password.
However, if the attacker has an accomplice in the group, the accomplice can reveal these three
chars to the attacker who just has to find a new wrong salt starting or ending with these chars,
and the DoS attack is successful. So, using the 3 first or last base 64 encoded salt is a bad idea. A
variant of this idea is to use some chars from the hash of the salt to identify the salt. Reproducing
the attack just described before would mean to the attacker that they have to find a salt whose
hash has these chars, which correspond to find a partial collision of hashes. The probability of
finding such a collision is assumed to be small enough to avoid an online attack.

With the solutions presented above, the problem of enclosing the group and allow access to only
allowed people was solved. But someone in the group could still try to impersonate another
member of the group, what means sending a message saying that it comes from another sender.
In order to avoid these types of attacks, each participant should sign the message they sends with
their private key so that nobody else can impersonate them. This however requires a public key
infrastructure, what is not really easy to set-up in a decentralized way without third trusted party.
So, it was decided to do it in a simpler way. Every participant that joins a group computes a private
and public key pair and sends a message containing their public key to all other participants*. The
participant then signs all the messages they send (including the one containing the public key) with
their private key. All the other participants store the public key received from this participant and
check the signature of the messages sent by them with this key. Now, the attacker could try to
send a public key for a new participant before the new participant had time to do it themselves, so
the attacker would be able to impersonate the new participant. This problem is solved by listening
if multiple public keys are sent for a participant. If two or more different keys are sent for the same
participant, it means that someone is trying to impersonate this participant, so the voting session
can be interrupted.

The solution of computing an own key pair and sending the private key allows to create a new
pair for each session, so the private key must not be saved, what would require asking the user
for a password to encrypt it. Since a voting session does not last a long time, a big key pair is
not needed. 512 bits keys are sufficient. AllJoyn also provides an authentication mechanism that
was not used here for various reasons. First of all, it is quite badly documented, so a lot of things
are not known precisely. Moreover, it seems that encryption and authentication are indissociable,
while only authentication and integrity are needed. Finally, AllJoyn's mechanism does not allow
to create what is really needed (for example small keys are sufficient for the present use case).
Because of these reasons, it was decided to implement it ourself, in order to adapt it to these
specific needs.

9.3. Architecture of the Application

The application consists of three main components. The first component manages the flow of
the graphical user interfaces. The second component is the protocol implementation. Finally, the

4This message is anyway needed to transmit the well-known name of the participant. AllJoyn uses random strings
to identify group members, but for MobiVote, a well-known name is required. So, this message is used to
transmit this well-known name as well as the public key corresponding to this participant.

Chapter 9. Implementation 60

third one is the network component, which cares about the message exchange.

The application works in two phases: first the vote preparation phase and second the voting phase.
In the first phase, the GUI component interacts with the network layer. At this time, the protocol
is not relevant and is not needed. In the second phase, the GUI interacts with the protocol and the
protocol interacts with the network layer. Figure 9.12 shows how the components are organized.
The red connections stand for the vote preparation phase and the blue ones for the voting phase.

Flow management

Network interface N Protocol implementation

Q)

Figure 9.12.: Organization of the components

In this figure, one can also see that in one way a direct reference is used from the flow manager
to the protocol implementation and to the network interface. In the reverse way, the concept of
events is used to notify the other components about a change. In the implementation, this is done
using the LocalBroadcast from the Android system.

Flow manager component The flow manager consists essentially of Android classes like Ac-
tivities, Fragments and other GUI concepts. It defines the flow of the user interfaces and interacts
with the user of the application. It also defines a data model for the votes. This data model
contains three main classes as shown in figure 9.13.

Poll is the class representing the vote. It contains the question, a list of Option objects which
represent the possible responses that can be chosen and a list of Participant objects that represent
the voters. It also stores the number of participants at the beginning of the vote run, the time
when the voting period was started and if the vote was already run or not. It also contains an
id serving to identify the object. The Option class contains the properties of an option, like the
option’s text, the number of votes an option received and the corresponding vote percentage. It
also contains an identifier and a reference to the poll object by storing its id. The Participant class
contains the properties of a voter, like a unique identifier on the network, a well-known name and
different information flags indicating, for example, if the voter has already voted or not. So, a
Poll object contains all the information of a vote and can be transmitted from an activity to the
other.

The flow manager component is also responsible for maintaining the database storing the votes.
The content of this database is a mapping from the data model described before in SQL entries. So,
the Poll object is stored with its properties, among other, its list of Option objects. The Participant

Chapter 9. Implementation 61

Poll

- id

- question: String

- options: List<Option>

- participants: Map<String, Participant>
- numberParticipants: int

- startTime: long

- isTerminated: boolean

+ getters/setters

1 1

Participant Option
- identification: String - id: int
- uniqueld: String - pollld: int
- hasVoted: boolean - text: String
- isSelected: boolean - votes: int
- hasAcceptedReview: boolean - percentage: double
+ getters/setters + getters/setters

Figure 9.13.: Data model for the vote in the flow manager component

objects however are not stored in the database, because they are considered as dependent of the
setup from the network. Thus, it make no sense to store them, because they could not be reused
later on another network.

Network component The network component consists of the wireless network management
classes and of an interface to the network layer. The implementation of the network layer itself is
relocated in an Android library project® which is referenced in the main project. This interface and
the Android library concept allow to easily change the network layer used which is chosen through
the strategy pattern. This was a very useful feature for the change from InstaCircle network layer
implementation to AllJoyn.

To exchange messages between the devices, the network layer needs to serialize the objects that
must be sent, since only char sequences can be transmitted over the network. For this implemen-
tation, Java serialization was chosen since it is a ready to use serialization method. However, this
solution is not the best in term of compatibility with non-Android devices. So, a strategy pattern
was implemented which allows to change the serialization method without much effort as shown
in figure 9.14.

5An Android library project is an Android project which cannot be run alone on a device. It needs to be referenced
and used as a library by an Android application project.

Chapter 9. Implementation 62

SerializationUtil Serialization
s: Serialization contains {interface}
+serialize(o: Object): String <> +serialize(o: Object): String
+deserialize(s: String): Object +deserialize(s: String): Object
r——————- - e 1
I I
OtherSerialization JavaSerialization
+serialize(o: Object). String +serialize(o: Object). String
+deserialize(s: String): Object +deserialize(s: String): Object

Figure 9.14.: Strategy pattern for serialization

The class SerializationUtil is the context class. It references an object of the abstract type Serial-
ization which is of the concrete JavaSerialization or OtherSerialization type. A call of a method
on the object SerializationUtil calls the corresponding method of the object s. So, the behavior
of the methods of the object SerializationUtil can be changed easily (even at runtime, but it is of
less interest for this case).

Protocol component The last component is the protocol implementation. The flow manager
component was designed to fit for different protocols. So it was important to easily be able to
change the protocol component. Implementing the strategy pattern for the protocol interface in
the flow manager component was a good solution to have a component compatible with these
various protocols.

As the protocol description in chapter 3 shows it, the flow of the protocol is very sequential. So,
a good way to implement it was to use a state machine. Figure 9.15 shows the flow of this state
machine.

Chapter 9. Implementation 63

Setup round
of protocol

Commitment

Commitment round
of protocol

R —

Vote

Voting round
of protocol

R ——

All valuef of each

rici ived?
(W participan{ receive

Recovery round no
of protocol <
-/ yes

Tally |

Tally round
of protocol

Figure 9.15.: Flow of the state machine

For this purpose, a library providing a state machine implementation® was used. Figure 9.16 shows
how it works.

Figure 9.16.: Entities of the state machine

®Tungsten: http://sourceforge.net/apps/mediawiki/tungsten/index.php

Chapter 9.

Implementation

64

The main class is called StateMachine. It is the class that manages the state of the state machine.
This class has a reference to an Entity. This entity can be used everywhere in the state machine.
So, it can be used to reference an object that would be used in the different states of the machine.
The Event class represents the events sent to the state machine. For each new incoming event,
the state machine looks for a transition corresponding to the received event. If one applies to the
current state, the transition is executed and the state machine enters a new state. The transition
is defined with a Guard which is used to check if an event corresponds to this transition. The
State Transition Map allows to define the states of the machine and the allowed transitions. This
map is passed to the state machine when it is started. Each state and each transition can contain
an Action which defines what must be done in a state or during a transition.

In this project, only actions in the states were used. These actions contain the implementation of
the cryptography of the different rounds of the protocol. Each action listens for incoming messages
from other participants, each action processes these messages, some of the actions have to send
a message, and so on. One can see that the structure is quite similar and some functionalities are
required by all actions. So, an AbstractAction from which all actions inherit was created. Figure
9.17 shows its structure.

«AbstractActions

#messageReceiver: BroadcastReceiver
#participantLeft: BroadcastReceiver
#messagesReceived: Map
-TaskTimer: TimerTask

+public doAction(...): void
#readyToGoToNextState(): boolean
#goToNextState(): void
#saveProcessedMessagel(...): void
#sendMessagel...): void
#startTimer(...}: void

#stopTimer(): void

#reset(): void

Figure 9.17.: Structure of an action

The messageReceiver broadcast receiver is responsible to listen to received messages corresponding
to the current round of the protocol. It stores them in the messagesReceived map and sends them
to a processing service. When the processing is done, the service notifies the action through the
saveProcessedMessage method. The participantLeft broadcast receiver listens if participants went
out of the network and exclude them.

The doAction method computes the cryptographic stuff needed at this state and sends the mes-
sage through the sendMessage method. After each incoming or outgoing message, the method
ready ToGoToNextState is called to verify if all messages from all other participants were already
received. If it is the case, the method goTolNextState is called which is responsible to send an
event to the state machine.

There is also a timeout for some actions. If a participant does not send a message during a
predefined amount of time, they are considered as not available anymore and, thus, are excluded

Chapter 9. Implementation 65

from the protocol. Not doing this would block the vote if a participant refuses to vote or if they
go out of the network.

The processing of a incoming message can take some time. So, it is important to do it on a
background thread. During the processing, other messages could come in, so there must be a
storing mechanism to save them until they can be processed. For that purpose, an IntentService,
which is a standard construct from Android, was used. It implements a queue where the message
can be stocked before being processed. When the processing thread is free it takes the message
at the top of the list and processes it on a background thread, and notifies the action back
that the message was processed and that there are some values to save. This service is called
ProcessingService.

9.4. Implementation of the Protocol

The first main part of this thesis was the design and creation of the user interfaces. The second
one was the implementation of the cryptographic protocol. Some points had to be fixed before
beginning that part. First of all, it was decided not to support remote participants. That means
that only people present at the same location can participate to the vote. There is no way to vote
from another location through the Internet. This choice made the security concept easier. For
example, being at the same location allows the participants to double check their screen in order
to verify if the content is the same. This would not be possible if someone participated to the vote
over the Internet. A second reason for not allowing this was the use of AllJoyn as network layer.
AllJoyn is a proximity based network application, so the use-case of vote over the Internet is not
supported.

Another point of discussion was the possibility to recover after a network failure. The idea is to
allow participants to come back in the voting session after falling off the network (for example
if their device powers off or faces network problems). Such a feature implies that all messages
exchanged over the network must be saved in order to be recovered if it is needed. Another point is
that the protocol implemented here is very sequential and needs the interaction of each participant
at the different steps. This means that if a participant misses a step, they cannot participate
anymore to the subsequent steps. For this reason it was decided not to implement this feature.

For the implementation of the protocol, the data model described earlier in figure 9.13 had to be
adapted to the protocol. The one described previously was thought as a generic data model that
should be compatible with almost all protocols that could be implemented. But, for the protocol
itself a specialization of the data model was required since every protocol is different. There were
different solutions to do it. A possibility was to create a new data model in which the classes contain
a reference to the corresponding class of the flow manager data model. This solution however
required a data model translation at each interaction between the flow manager component and
the protocol component. To avoid that, a better solution was to work with inheritance. Figure
9.18 shows how it works.

Chapter 9. Implementation 66

ProtocolPoll
- G_q: GStarModSafePrime
-Z_q: ZMod
- generator: GStarModElement
- excludedParticipants: Map<String,Participant>
- completelyExcludedParticipants: Map<String,Participant>
+ getters/setters
+ getDataToHash(): Tuple
+ generateGenerator(): void

Participant

ProtocolParticipant ProtocolOption
- protocolParticipantindex: int - representation: Element
- Xi: Element + getter/setter
- ai: Element

- proofForXi: Element

- hi: Element

- bi: Element

- proofValidVote: Element
- hiHat: Element

- hiHatPowXi: Element

- proofForHiHat: Element

+ getters/setters
+ getDataToHash(): Tuple

Figure 9.18.: Data model for the vote in the protocol component

With this solution, at the start of the protocol, the flow manager data model has to be converted
to a protocol data model. Then, no more translation is needed when sending the protocol data
model to the flow manager because the ProtocolPoll is a Poll and the ProtocolOption and Proto-
colParticipant objects it contains are Option, respectively Participant. This is the big advantage of
this solution. However, it also has a disadvantage, namely that the protocol data model depends
on the flow manager data model. But when comparing them, the advantage seemed greater.

The ProtocolPoll extends the Poll class by defining the mathematical groups and generator
(UniCrypt classes) used in the protocol and by storing the participants excluded during the protocol
run. The ProtocolOption only defines a representation which is the value that is used to encode
a vote for this option. Finally, the ProtocolParticipant contains all the cryptographic values that
are computed at the different rounds of the protocol and it also contains an index identifying
the participant in the protocol. ProtocolPoll and ProtocolParticipant also provide a convenience
method allowing to retrieve all the important values that should be hashed in the proofs computed
required by the protocol in order to link a proof to a protocol run and to a participant. In the
ProtocolPoll class, there is also another method used to create a vote dependent generator as this
will be explained later.

9.4.1. Protocol Initializations

The architecture adopted for the protocol component is very sequential as the protocol itself is.
This was already described. However, the protocol does not start with the setup round. There
are some initializations that must be done before. For example, a prime number must be used to

Chapter 9. Implementation 67

create the mathematical groups, each option must be represented with a value, each participant
must be identified. These initializations were described in more detail in section 3.2.1. These
are all things that must be done before starting the message exchange required by the protocol.
Moreover, each participant must agree on these initializations. That means that they must be
communicated to the other participants.

So, the first question was when to do it. Two steps were possible for that: first, just before
beginning the review process, second, just before beginning the voting period. The most logical
solution seems to be just before beginning the voting period, because it is the moment since which
no property of the vote will change anymore. However, a deeper look into this question shows that
this solution is not secure. The easiest way to do the initializations is that one of the participants
(the administrator of the vote for example) computes them and communicates them to the other
participants. Then, these participants should be able to accept the initializations or not. If they
are sent at the beginning of the voting period, it is impossible for a participant to reject them. So,
it should be included in the review process. The review screen, as described in the user interfaces
section, allows the participants of the vote to check if the properties of the vote are correct, and to
verify that everybody has received the same vote content by double checking their screen. When
including the initializations in the review process, there is a possibility for a participant to reject
them, and after the review process, nothing can be modified anymore.

However, there is still a problem. How should a participant agree on the cryptographic initializa-
tions? Cryptographic values cannot easily be displayed and verified on a screen. To make this
verification possible, there must be an implicit check that does not require the intervention of the
voter. The idea was to bind the initializations mentioned earlier with something visible, i.e. the
text of the options and the question of the vote. Concretely, the administrator computes these
initializations, combines them together in order to obtain a reference string and finally, gets a
generator of the cyclic group needed for the protocol using the reference string. The admin then
sends these initializations to all other participants which do exactly the same computation with
the received values and compare the result with the received generator. If they do not match, it
means that the values received were not the same as the ones of the admin. The admin could still
try to make an attack by sending different contents to the various participants, but in this case,
the generator used in the protocol would not be the same for all participants and the protocol
would fail.

This idea has another advantage. In this protocol, there is no central bulletin board or trusted
party, so nobody can guarantee that a computed result corresponds to given vote. By using the
texts of the vote in the crypto protocol, both parts cannot be separated anymore. So, this guar-
antee can be obtained without trusted party. Moreover, using the initializations in the choice of
the generator prevents the administrator from choosing the generator they want.

The app developed in this thesis supports multiple options vote, not only yes-no votes. Therefore,
a way to represent each option in the protocol had to be implemented. The technique of Baudron
et al described in 3.2.8 was chosen. This is done in the initialization phase by the administrator, i.e
just before the review process. For the creation of the modular cyclic group used in the protocol,
a safe prime of 2048 bits is used what is commonly estimated to be secure until 2030.

Chapter 9. Implementation 68

9.4.2. Setup Round

Once this done, when the admin decides to start the voting period, the state machine described
in section 9.3 can be started, and the action defined for each step can be executed. The first one
is the Setup round. A message is sent at this step containing the value to publish and the proof
as described in section 3.2.2. When receiving the message from another participant, the proof is
verified and the values contained in the message are stored. If the verification of the proof fails,
the owner of the proof is excluded from the protocol.

For this round, a time out is set. If some participants do not send their message in the given time,
they are excluded from the protocol. They will not be recovered in the Recovery round since this
round is foreseen to recover only voters that have participated at least to one round, what is not
the case here.

9.4.3. Commitment Round

Once the setup message received from each participant, the state machine changes to the com-
mitment state. This round is cut in two parts. First, a computation has to be done with the values
received in the setup round. Once this done, the user has to choose the option they want to vote.
Then, the second part of the round is to encrypt the chosen option and compute the proof of
validity. At this step, only the validity proof is sent to all other participants.

More detailed, the value computed in the first part of this round is the h; value as described in
section 3.2.3. This value is not foreseen to be published in the protocol description. However, it
is needed by the other participants in order to verify the proof of validity received. The verifier
of this proof could compute the h; value as the prover did to generate the proof, but that means
that each participant should again compute the h; value for all other participants, and that takes
some time. In order to save this time, this value is sent with the vote which is published in the
voting round. Doing this is not a risk for the security of the protocol because the h; value is not
secret since it can be computed by all other participants. The only risk in doing this would be
that someone voluntarily publishes a wrong h; value. But even that would not be dangerous since
this would cause the verification of the proof of validity to fail and thus the participant would be
excluded from the protocol. So, one can see that publishing the h; value is not a problem.

As seen in the setup round, a timeout was implemented in order to avoid a deadlock if a participant
falls out of the network. In the commitment round, this feature is not used, because using a timeout
would limit the time the voter has to choose the option they want to vote. Using a timeout would
require someone to define how long it should be (since the duration of the voting period should be
configurable) and it would require to show the resting time on the screen of the device. Another
problem using a timeout is the problem of synchronization. The timer is started at the beginning
of the round, but the device of each participant does not necessarily start the round at the exact
same time. There can be a delay caused by the difference of computation power for example. This
is not really a problem for the timeout in the setup round since it is only used when a problem
occurs (network connection loss of one participant). In the commitment round, the timeout would
have another function, namely to indicate the resting voting period time. A voter could want
to wait the five last seconds before voting. If there is no synchronization between the devices, it
could happen that one device has already finished the voting period and does not accept new votes
anymore. Since implementing synchronization between the devices is quite hard, it was decided

Chapter 9. Implementation 69

not to use a timeout. It is not absolutely necessary since the admin of the vote has the possibility
to end the voting period. So, if one device fell out of the network, the admin can play the role of
the timeout.

9.4.4. Voting Round

Once all commitment messages received, the state machine changes to the voting step. There, a
message containing the vote is broadcast. When receiving the message from another participant,
the proof of validity is verified and the values contained in the message are stored. If the verification
of the proof fails, the owner of the proof is excluded from the protocol. This step corresponds to
the one described in 3.2.4. At this step, a timeout is used in the same way as described for the
setup round.

9.4.5. Recovery Round

The recovery round is the last round where a message is broadcast. The computations done in
this round are described in 3.2.6. The goal of this step is to make some computations that allow
to compute the result of the vote even if some participants did not send a value for some of the
rounds described before. The computation done at this step can be studied in 3.2.6. In this round,
some messages are exchanged as in the other rounds. To avoid a deadlock if a participant does
not send a message, a timeout is used in the same way as described before, in the setup round.

To verify the proof computed in this round, a value is needed that is not foreseen to be published
in the original protocol description. It is an identical case as described in the commitment round.
For the same reason, this value is published.

In certain circumstances, the recovery round can create some problems with the ballot secrecy.
Let us imagine there are four participants at the beginning of the voting period, but two get out
of the network. The recovery round will enable the two resting participants to compute the result
of the vote. If there are only two voters, there is no ballot secrecy since each voter can find out
what the other voted. This means that the recovery round can put the ballot secrecy property in
danger. It however was decided not to care about this case, because the ballot secrecy property
is not only broken in case of two voters but also when all minus one voters vote for the same
option. In this case, the only voter that does not choose this option breaks the ballot secrecy. So,
it seemed not appropriate to only block some of all these cases and blocking all (even assuming
there is no collusion between voters) would be too limiting.

9.4.6. Tally

The last step of the protocol is the tally. As it stands in the protocol description in 3.2.5, the
tally uses a homomorphic process to recover the result of the vote. In the mentioned section, one
also observes that there is a discrete logarithm that must be computed. As this was mentioned in
section 5.2, the best solution to compute it is to try all solutions corresponding to a valid vote.

Chapter 9. Implementation 70

Standard method So, an algorithm generating all valid options permutations depending on the
number of options and participants was implemented. For all these permutations, it computes the
result that should be obtained by the protocol by encoding the permutation as a vote v and by
computing the corresponding g” modular exponentiation. It then compares this value to the one
obtained by the protocol until they match. So, one modular exponentiation is needed for each
permutation. The time complexity of this algorithm is limited by the number of valid permutation
for a specific setup.

Let us have a look at an example. We have a vote with 4 options and 6 participants. A vote for
option one can be represented as follows: [1,0, 0, 0], a vote for option 2 as follows: [0, 1,0, 0], a
vote for option 3 as follows: [0, 0, 1, 0], and so on. The sum of the votes must be equal to 6, since
there are 6 voters and every voter has to submit a vote. So, [3,1,2,0] would be a valid result
with 3 votes for option 1, 1 for option 2, 2 for option 3 and 0 for option 4. However, [2,3,1,4] is
not a valid result for this setup since there are more than six votes in total. For this setup, there
would be 84 valid options permutations.

By studying the complexity of this algorithm, it was noticed that the number of valid permutations
in function of the number of options 0 and the number of participants p were contained in Pascal's
triangle, as shows figure 9.197.

Figure 9.19.: Number of valid results in Pascal’s triangle

One can see, that for the setup of this example (4 options, 6 participants), the number of valid
permutations is in fact 84. Knowing that the value at the n*" line and k* column in the Pascal’s
triangle (starting the count with 0) is given by (}), it was found out that the complexity of this
algorithm depending on o (number of options) and p (number of participants) is:

o+p—1
o—1

"Source: http://www.math.rutgers.edu/ erowland/images/pascalstriangle-large.gif

Chapter 9. Implementation 71

This result was already mentioned in the publication by Hao et al [6] describing the protocol
implemented here.

In order to speed up the tally phase, all these possible results and their corresponding value that
should be obtained by the protocol are computed in a background thread during the whole protocol
run. As soon as the protocol initializations are done, this computation is started and the possible
results and their corresponding value are stored in a hash map. Once the tally phase is started and
the result of the protocol run computed, the program checks the hash map if the found result is
already in the map. If so, the tally is terminated and the result can be displayed on the screen. If
not, the program waits until the result is computed. The lookup is done via the Future concept
of Java.

Multi encryption ballot This optimization although do not solve the increasing complexity for
increasing number of options and participants. With some crypto protocols, there is a possibility
to use multi encryption ballot instead of the Baudron et al encoding method. The idea in multi
encryption ballot is, that a yes-no vote is generated for each option. So, a cipher text is generated
containing a 1 in the exponent if the option was chosen. In the case of the present protocol, the
encryption is not really an encryption but more a commitment. However, in this paragraph it will
be considered as encryption since it the purpose of multi encryption ballot. So, cipher texts are
created as follows: b, = h¥ - g' where b;, is the encrypted vote of option o for participant /. If
the option was not chosen, then a 0 is encrypted (b, = h - g°) (see chapter 3 if a refresh of how
the protocol works is needed). Thus, if there are o options, o cipher texts are computed for each
participant. For each cipher text, a proof of valid vote must be computed to prove that the cipher
text contains either a 1 or a 0. Moreover, a proof must be generated to show that a participant
only chose one option. This can be done by computing a proof of validity showing that the sum
of all encryptions produced by a participant is equal to 1.

The tally is then done independently for each option. The cipher texts corresponding to the first
option are collected from all participants and are multiplied together. This results in homomorphi-
cally summing up the votes for this option in the exponent (obtaining g where ¢; is the number of
votes for option 1). The same procedure is repeated for options 2 to 0. So, at the end, a discrete
logarithm has to be computed for each option, but these discrete logarithms are much more simple
than the complex one obtained with the Baudron et al method. So, the multi encryption ballot
method would help to make the tally of bigger votes faster. For small votes however, the Baudron
et al method would stay the fastest.

However, the multi encryption ballot method seems not to work for the crypto protocol used in
the present project. Recall that the encryption is done as follows: b; = h - g¥/. When using multi
encryption ballot, this operation should be repeated o times, once for each option. In 0 — 1 cases,
v; would be equal to 0 and once v; would be equal to 1. Since x, g and h; are constant, this
operation would give o — 1 times the same cipher texts and once another. So, the vote secrecy
could be broken only by watching the cipher texts, since the only one that is different of the others
is the encryption of 1, thus corresponding to the chosen option.

In order to avoid this problem, a different value of x should be chosen for each option. However,
this would require to compute o times a proof of knowledge for x;, o times a h; value, 0+ 1 times
a proof of validity as already mentioned, and, in case of the recovery round is needed, o times a /A7,-X"
value and o times a proof of equality between discrete logarithms (see chapter 3 for the protocol
description). As one sees, there are much more computations to do. So, the gain offered by multi

Chapter 9. Implementation 72

encryption ballot in the tally phase for this protocol would be compensated by the supplementary
computations to do during the protocol run. This method would only be interesting for big votes
where the tally process efficiency is very bad with Baurdon et al method. However, most of the
boardrooms do not have the interest to run such big votes.

Method with precomputation Another possibility to optimize the tally process would be to
do some precomputations for the permutations that must be tried out. With the standard method
presented before, one modular exponentiation must be done for each permutation representing a
valid vote. A way to improve that would be to consider each option separately. Each option can
received maximum p votes where p is the number of voters. o represents the number of options.
So, for a vote with 3 options and 4 participants for example, a vote would be encoded as follows:
Option 3

Option 2 Option 1

Figure 9.20.: Vote encoding using Baudron et al method

For each option, the cases can be considered when it receives 0, 1, 2, 3, or 4 votes and the
corresponding values can be precomputed as show in following table:

0 votes | 1 vote | 2 votes | 3 votes | 4 votes
Option 1 q° g' g° g° g*
Option 2 gO 98 916 924 932
Option 3 90 7% P g2 9756

Table 9.1.: Example of precomputations for p =4 and 0 = 3

One sees that when moving to the next column while staying in the same line, the value obtained
for the previous column must be multiplied with the value obtained for 1 vote. For example, when
computing the value for 3 votes, value obtained for 2 votes is multiplied with the one obtained for
1 vote. When wanting to compute the value for 1 vote for the next option, the value obtained for
the previous line in the k" column can be squared, where k correspond to the greatest power of
2 smaller than p. Values from column O votes are equal to 1.

Once this table computed, all permutations representing a valid vote must be tried out as done in
the first method presented here. But this time, no modular exponentiation are needed anymore.
They can be replaced with multiplications. For example, the result that should be obtained by
the protocol if permutation is [2,1,1] can be compute by picking up, in table 9.1, the value
corresponding to 2 votes for option 1 and multiplying it with the value corresponding to 1 vote for
option 2 and with the value corresponding to 1 vote for option 3, namely g° - g® - g°*. This value
can then be compared with the result obtained by the protocol.

With this precomputation method, one sees that instead of computing one mod exp for each
permutation, only o —1 multiplications are required. However, the table 9.1 must be precomputed,
requiring o - p multiplications. So, it seems to be very efficient, since no mod exp are required
anymore. This can be interesting even for small votes. This method was also implemented in order
to compare it with the previous mentioned.

Chapter 9. Implementation 73

9.4.7. Using Unicrypt

As already mentioned, for the implementation of the cryptography, the crypto library UniCrypt
was used. This library was still under development. Some problems occurred when using it on
Android. First of all, UniCrypt was written in Java version 7. However, Android only supports
Java 6. Thus, the library had to be modified and the Java 7 constructs were removed.

Another point was the serializability of the classes. At the beginning of the project, UniCrypt
was neither Java serializable nor had it another way to serialize the classes used here. So, it was
decided to add Java serialization as it was the fastest way to have a working serialization. At
present, another serialization method is under development.

Another problem faced was that the verification of the proofs worked on some devices while
failing on some others. By studying the problem in more detail, it was noticed that the Android
version played a role. The reason was a change in the implementation of the SecureRandom
class since Android 4.28. Since this version, it is no more possible to use a SecureRandom object
to deterministically generate values. However, this feature was used in UniCrypt and had to be
replaced.

9.4.8. Other Functionalities

An important thing in e-voting is the verifiability property which allows to check later that a voting
process went of as planned. The protocol implemented here has this property and this check is
already done during the whole voting process. However, it would be interesting to be able to
check it again later, for example if someone claims that something went wrong. In order to be
able to do that, an export function which creates an XML file containing all the cryptographic
values generated in the protocol was implemented. This allows a third programmer to implement a
program getting these values and replaying the protocol to check if the same result is obtained.

To export the values in XML, a library called SimpleXML® was used. This library has the disadvan-
tage that it is quite big and considerably increases the size of the APK file!® of the app. However,
it presents the advantage to be able to directly serialize objects in XML. Since the values to write in
the XML file are mostly UniCrypt objects and since there was no good way in UniCrypt to serialize
objects, entities enabling to easily serialize and deserialize UniCrypt elements had to be created.
This is especially true for proof elements which belong to complex mathematical groups. If there
is a better serialization method in UniCrypt one day, this could be simplified. This modification,
however, would make the verification process dependent on UniCrypt, what is not the case at
present.

In order to show how this XML file could be used, a little verifier was developed. It is a shell
Java program that reads the values of the XML files and verifies the proofs generated at each
round of the protocol. Finally, it also checks if the previously computed result is correct. Another
functionality is the ability to pass multiple XML files as parameters to the verifier program, which
checks if the content of the files is identical. This allows to check if the protocol ran the same
way on the device of different participants.

8http://android-developers.blogspot.ch /2013 /02 /security-enhancements-in-jelly-bean.html
9Simple XML serialization: http://simple.sourceforge.net/
10APK is the extension of the executable files on Android

Chapter 9. Implementation 74

This verifier uses the same code base as the implementation of the protocol in the app itself. So,
this tool cannot really be used as official verifier but more as example of how the XML exported
values can be used.

Chapter 9. Implementation 75

10. Results

This chapter reports the results of this work. Some general findings were already mentioned in
chapter 5 in part 1 and, thus, are not repeated here. This chapter studies results that are more
specific to the implementation.

10.1. User Interfaces

For what concerns the graphical user interfaces, most of the findings were already mentioned in
part one. The most important however is probably that the same GUI could be used for the
implementation of two different protocols. This was probably possible since the Ul were studied
to be used even without security. So, the implementation of the protocol could be done in a
transparent manner.

The results of the usability tests showed that it is very important to ask people that do not know
the project to try out the application. The feedbacks received were really constructive and some
completely unexpected points and propositions came out. Most of the time, the analysis done by
someone knowing how the application should work are not the most pertinent.

10.2. Load Tests

Some load tests were done in order to see how the network layer reacts and how the protocol
scales. The first finding concerns the network layer. When setting up the first vote, only 16 voters
could connect to the network group created by the administrator. After some research, it turned
out that AllJoyn limits the number of client connections to 16 in Android. This is hard coded
in AllJoyn's sources. Wanting to modify it requires to recompile the whole source, which is a
complex process since the source of Android itself as well as the Android native development kit?
must be used. It seems that there exists a workaround using a debug build of AllJoyn, where
the configurations can be overwritten. However, not enough details about this workaround were
available to use it in this case. So, the application is currently limited to 17 voters.

Another problem occurred with an Android programming concept. To pass data from an activity
to another in Android, it is recommended to use an intent where the data to send can be attached
as extras. The data are serialized and sent to the new activity. However, the size of these extras is
limited. In the present case, at the end of the tally process, the whole protocol data must be sent
to the activity displaying the results. The protocol data, however, contain multiple values of 2048
bits. The number of such values depends on the number of options and, above all, on the number

Toolkit allowing to program in native languages like C and C++

Chapter 10. Results 76

of participants. Moreover, there is a complex structure of objects from UniCrypt that must be
serialized in order to be sent. The fact was, that with all this stuff, the limit was exceeded. So,
this problem was solved by giving a reference to the protocol object instead of sending it through
the intent.

Another characteristic was tested, namely the number of clients that can connect on the built-in
hotspot of an Android device. This clearly depends on the hardware of the device. On the Nexus 4
from Google, up to 10 clients could connect. On the Nexus 5, a try was made with 25 devices and
they could connect without any problem. This means that if one of the voters owns a recent device,
an external hotspot is no more required for a vote. So, the application can be used completely
independently of external hardware.

The load tests also served, and this was their main goal, to evaluate how efficient the crypto
protocol is on mobile devices. Each round of the protocol was considered. The conclusions that
can be derived from these time measurements are described in following paragraph. As a reminder,
values of a size of 2048 bits are used in the protocol.

e Setup round: no heavy task (in comparison with other tasks required by the protocol) is
done in this round. The time needed to complete this round depends on the number of
participants, because each of them has to send a message and process the ones received
from the others. To be concrete, it took maximum 10 seconds on the least efficient device
when 17 devices were participating.

e Commitment round: this round is not interesting since it requires a user interaction which
lasts an arbitrary long time. The time for the commitment round depends on the time used
by all users to vote.

e Voting round: the complexity of the voting round can be reduced to the complexity of the
verification of the proof of valid vote. Table 10.1 shows the time needed on different devices
to verify one proof of validity for a vote with different numbers of options. The time for
this round then depends on the number of participants since there is one proof of validity
for each voter.

e Recovery round: the recovery round is very similar to the setup round. The time needed
for this one is even less than for the setup.

Device 5 options 10 options 20 options
Nexus 5 1.3s 2.4 s 5.6s
Nexus 4 2.0s 39s 8.7s
HTC One V 2.8s 5.8s 24 s

Table 10.1.: Time required for verifying one proof of validity

As mentioned in chapter 5, the tally is the heaviest part of the protocol. Table 10.2 shows how
much time different devices needed to compute one permutation. Using the formula to compute
the number of possible permutations for a vote with o options and p participants,

Chapter 10. Results

(

o+p—1
o—1

77

the worst case time can be easily computed for all types of devices. The worst case in this situation
means that the last computed permutation corresponds to the result obtained in the vote. The
values shown here correspond to the standard method described previously.

Device Time [ms]
Nexus 5 1.79
Samsung Galaxy Note 10.1 2.32
Nexus 4 2.54
Samsung Galaxy Tab 2 10.1 4.27
HTC One V 6.3

Table 10.2.: Time to compute one permutation in the tally process

So, one can conclude, that, with the standard method, if a limitation is fixed to 180 seconds (3
minutes) for the tally process, on the HTC One V device, a vote with 9 options and 9 participants
could be realized. On a Nexus 5 device, 10 options and 10 participants would be supported. Of
course, reducing one of the two parameters allows to increase the other, so with less options, more
participants can be tolerated and vice-versa. However, the number of options has a greater impact
on complexity than the number of participants.

Assuming that in most of the cases, up to five options are needed, up to 18 participants would
be supported on the HTC One V device, and up to 24 on the Nexus 5. These are reasonable
numbers that make this application usable in most of the cases. Keeping in mind that all these
calculations were made for the worst case, these numbers could still be increased when assuming
that an average of 2/3 of the permutations must be computed to find the result obtained in the
vote.

With the implementation of the method with precomputation also described in 9.4.6, a speed
up could be reached. By simply computing the table of precomputations, the tally process takes
between 2 and 3.5 times less time that with the standard method regardless of the number of
options and participants the vote contains. The measurements could however not be realized on
mobile device because of lack of time. However, it can be assumed that the speed up would be
the same. So, with this method, the application is even more usable.

Following table shows the speed-up that could be reached for different number of options and
participants:

Participants

Options 5 | 10 | 15 | 20
7 3 1233(315|33
10 265 | 35 - -
14 228 | 1.9 - -
18 3.8 - - -

Table 10.3.: Speed-up with precomputations

Chapter 10. Results 78

This table gives an idea of the improvement made with the precomputations method. The value
in the table are the ratio between the time needed by the standard method and the time needed by
the precomputations method. As the table shows, there are variations, but no real tendency can be
identified. Some values could not be computed because of lack of time. These time measurements
should be done again in a more systematic manner. The ones here were only done to give an idea
of the improvement obtained. There was no more enough time to make a better analysis.

10.3. Comparison with the Concurrent Thesis

The result obtained by Jiirg Ritter in his thesis is different in term of efficiency of the crypto
protocol. With the CGS97 protocol [2], both single encryption ballots method (with Baudron et
al encoding) as well as multi encryption ballots method can be used. The second requires a little
more computation and is not very good for small votes but rapidly becomes more interesting when
the number of options and participants increases. The trade off seems to be about 10 options and
10 participants.

When using multi encryption ballot method in the case of the present thesis, the trade off would
be reached later because of the amount of supplementary computations required to keep the vote
secrecy property. Thus, it is less interesting in this case. However, the protocol implemented in
the present case is more lightweight in term of computations done during the voting period.

For what concerns the user interfaces, the result obtained in these two theses is comparable
since the same GUI was used. Only a little adaptation had to be made in the GUI of the CGS97
implementation since a threshold must be parameterized to ensure the robustness of the protocol.

Chapter 10. Results 79

11. Future Work

The application obtained in this project allows to set up a vote with up to 17 participants. There
are however some functionalities that could be improved or that are not available yet, but would
be useful.

Network layer The networking layer is especially concerned. Presently, the serialization used in
the messages exchanged over the network is Java serialization. This is not the best solution if it is
foreseen to adapt the application for non-Java platform. Two other improvements concern AllJoyn.
For an unknown reason, AllJoyn limits the number of clients on Android to 16, this means that
only 17 persons (including the administrator of the vote) can participate to a vote. This limitation
is hard coded in AllJoyn’s sources. Increasing this number would be a first improvement. The
other one concerns the problem of finding the AllJoyn network group on some devices. Sometimes,
some devices cannot connect to the network group because they are not able to find it on some
networks. On other networks, it works fine. The reason for that is still unknown.

Another useful feature still concerning the network layer is the ability to recover the missed messages
if a device temporarily disconnects from the network. Currently, this is not supported, so if the
network connection of a device is interrupted, this device is no more able to participate to the
vote. Implementing a recovery functionality would increase the robustness of the app.

Protocol efficiency The next optimization concerns the protocol. Currently, the tally of a vote
with a big number of options and with many participants is slow. A solution should be found in
order to better support such use-cases. A variant would be to use distributed computations. Each
of the participants computes some of the combinations and when one finds the right combination,
they send it to all the other participants, who can verify if it is the correct one. Another solution
would be to merge various protocols in the same app, for example a more efficient one for small
votes and a more efficient one for big votes and to dynamically choose the appropriate one. For
example, the app obtained in the concurrent thesis could be merged with the one obtained here.
Since the same GUI is used, this could be done quite easily. This could be interesting since the
crypto protocol of the concurrent thesis is more efficient for bigger votes.

Currently, with the implemented method, there is also a risk to fill the whole memory of the device
in the tally round. The actual implementation puts each valid permutation in a hash map. If the
number of these results is big enough and if the voting process lasts enough time, a overflow of
the available memory could happen.

Verifier The actual implementation of the verifier is very basic and uses the same code basis and
the implementation of the crypto protocol itself. The implementation of an independent and more
powerful verifier would be a significant advantage in the recognition of this app. By independent

Chapter 11. Future Work 80

is meant that another person or institution than the one that implemented the app should develop
such a verifier.

Compatibility Last but not least, the actual application only works on Android devices. To be
widely used in the mobile world, an app should also be available on at least on iOS devices like
iPhones and iPads. This, however, would be a big job since the crypto library used is written in
Java and iOS does not support Java. So, the protocol should be implemented without the help of
this library. Moreover, the exchange of cryptographic values should be adapted.

Chapter 11. Future Work 81

12. Summary

The realization of this protocol is possible on a concrete mobile platform, however an adaptation
of the threat model is needed. The user interfaces had to be adapted multiple times until a
satisfactory result could be obtained after multiple tests done with project internal and external
people.

As the limitation of the number of participants showed, using a third party software (AllJoyn in
the present case) can be constraining, sometimes surprisingly since such limitations are not always
documented.

When implementing a protocol, some security concepts, which are described with only a few words
on the paper, are sometimes not so simple to translate in practice. A lot of different small aspects
must be taken into account. This was for example the case for the authenticated network layer.

The implementation of the protocol confirmed the assumption of the complexity of the tally
process. However, the product obtained seems to be usable for most of the common cases in
boardroom voting.

Chapter 12. Summary 82

13. Conclusion

This thesis showed that the protocol described in the publication titled A Fair and Robust Voting
System by Broadcast can be used in practice on mobile devices. However, there is a limitation of
the number of participants and the number of options the vote proposes. This is due to the heavy
computations that must be done in the tally phase. Some improvements could already be done in
order that the application is usable for most of the use-cases for boardroom voting.

Dedicating a part of this work for studying the user interfaces was a good idea. The results
obtained on that level are good especially in sense of reusability of the same GUI for different
protocols. As mentioned earlier, this part was done by two students together. This was a good
idea since the work could be divided up. For the implementation of the protocols, having another
student working on a similar project with a different crypto protocol was interesting for exchanges
of ideas and discussions.

The realization of this project was for me the first confrontation with implementation of cryptog-
raphy. This project also allowed me to deepen my knowledge in Android programming especially
for the user interfaces design.

The possibility to use UniCrypt was also a benefit for this project, since the implementation of
cryptography was facilitated. However, the fact that it is still under active development was a
little bit annoying since updates had to be made regularly and they required changes to be done
in the code of the application.

The general conclusion of this master’s thesis is very positive. The project is not finished, it still
has improvement potential, but it is in a state that it can be used on a wider scale.

Chapter 13. Conclusion 83

References

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

9]

O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern, and G. Poupard, “Practical multi-candidate
election system,” in PODC, 2001, pp. 274-283.

R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally efficient multi-authority
election scheme,” in Advances in Cryptology — EUROCRYPT '97, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 1997, vol. 1233, pp. 103-118. [Online].
Available: http://dx.doi.org/10.1007 /3-540-69053-0_9

S. Delaune and S. Kremer, “Formalising security properties in electronic voting protocols,”
Deliverable AVOTE 1.2, (ANR-07-SESU-002), Apr. 2010, 17 pages. [Online]. Available:
http://www.lsv.ens-cachan.fr/Publis/PAPERS /PDF /avote-d12.pdf

A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification and signa-
ture problems,” in CRYPTO, 1986, pp. 186—-194.

R. Haenni and O. Spycher, “Secure internet voting on limited devices with anonymized dsa
public keys,” in Proceedings of the 2011 conference on Electronic voting technology/workshop
on trustworthy elections, ser. EVT/WOTE'11l. Berkeley, CA, USA: USENIX Association,
2011, pp. 8-8. [Online]. Available: http://dl.acm.org/citation.cfm?id=2028012.2028020

F. Hao, P. Y. A. Ryan, and P. Zielinski, “Anonymous voting by two-round public discussion,”
IET Information Security, vol. 4, no. 2, pp. 62—67, 2010.

D. Khader, B. Smyth, P. Y. A. Ryan, and F. Hao, “A fair and robust voting system by
broadcast,” in Electronic Voting, 2012, pp. 285-299.

J. Ritter, “Instacircle — a location-bound ad-hoc network for android devices,” Bern University
of Applied Sciences, Engineering and Information Technology, Tech. Rep., 02 2013. [Online].
Available: http://e-voting.bfh.ch/students/theses-reports

——, "Decentralized e-voting on android devices using homomorphic tallying,” Bern University
of Applied Sciences, Engineering and Information Technology, Tech. Rep., 02 2014. [Online].
Available: http://e-voting.bfh.ch/students/theses-reports

References 84

http://dx.doi.org/10.1007/3-540-69053-0_9
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/avote-d12.pdf
http://dl.acm.org/citation.cfm?id=2028012.2028020
http://e-voting.bfh.ch/students/theses-reports
http://e-voting.bfh.ch/students/theses-reports

A. User handbook

This chapter describes how the MobiVote Application can be used in practice. This part was
written by Jiirg Ritter. Since the use of the application is the same for both protocol implemented,
this handbook was reused here after a little adaptation.

A.1. Purpose of this application

MobiVote can be used as an e-voting system for a small group of people. A possible use case
would be a vote in a board of directors of a company, or any other committee where a group of
people want to seek a decision in a secure manner. With MobiVote, such a vote can be set up
very spontaneously as no special infrastructure is required. The system guarantees the privacy of
each voter. It is not possible to find out how a participant has voted.

A.2. Prerequisites

In order to run a vote using MobiVote, all the participants need to be in possession of a mobile
device such as a smartphone or a tablet computer running at least Android 4.0 (Ice Cream Sand-
wich). All the devices also need to be WLAN capable and the WLAN adapter has to be activated.
Currently it is not possible to use mobile devices of other flavours such as Apple iPhones or devices
running Windows mobile. In order to carry out a vote, at least two persons with their device must
be involved.

A.3. Installation

The MobiVote application is available as an APK file which can be installed on Android devices.
In order to install the APK file, the file needs to be transferred to the device. The easiest way
to do so is to connect the device to a computer using the USB cable and copy the APK file to
the device. Using a filemanager on the mobile device, locate the APK file in your filesystem and
install it by clicking on it. For this to work, the option [Settings) Security) Unknown Sources| must be
enabled.

Appendix A. User handbook 85

A.4. Start of the application

After a successful installation, the app should be available in the applications screen of your Android
device. The app can be started by clicking on the icon. This leads you to the main screen of the
application (A.1).

{71l Mobivote

Welcome to MobiVote

CGS97 Edition

JOIN ELECTORATE

~o-

Figure A.1.: MobiVote main screen

A.5. Setup a vote

Aministrator only The group needs to nominate one member as the administrator of the vote.
The administrator is responsible for the orchestration of the voting process. That includes defining
the question and the possible options, approving other people to be in the electorate and initiating
the voting phase.

Aministrator only In order to setup a new vote, the nominated administrator selects the option
on the main screen. The appearing screen shows a list of prepared votes, as well as an
option to create a new vote (A.2). In the “Vote Setup” screen (A.3), the properties of the vote
can be defined, namely the question of the vote and a list of possible answers. The option
[Allow blank ballots| can be checked if voters should be allowed to cast a blank ballot.

From here you can either go back if you just want to prepare the vote in advance for an upcoming
session, or you can directly start the vote by clicking on the button [Start vote].

Appendix A. User handbook 86

(28] Viote administration (2t Vote setup

VOTES QUESTION

Which is the best skiresort & Which is the best ski resort in

in Switzerland? Switzerland?
| Allow blank ballots

CREATE NEW VOTE
OPTIONS
Grindelwald u
Adelboden &
Zermatt —
4 Vallées 7
Enter the option here —+—
-3 START VOTE
Figure A.2.: Available votes Figure A.3.: Vote setup

A.6. Start a voting session

Aministrator only In order to establish a voting session, some additional information regarding
the network is required. First, you need to enter an identification into the according textbox at the
top of the screen A.4. This value defines how you will be represented in the voting session. Most
likely you will want to enter your name into this box. This value will be saved on the device and
will be proposed in upcoming sessions, but you can change this representation anytime you want
to. Moreover, you are required to tell the application in which wireless network the voting session
should take place. In most cases this will be the network that you are currently connected to. If
you want to use this network, you can just click on the button [Use network “XYZ"|. In case you want
to use a different network, you can use the button [Advanced network configuration|. This screen lets
you choose all currently available networks (A.5). When choosing a network, you should consider
that all the participants need to be allowed to connect to this network.

A.7. Share the session parameters

After selecting the network, a screen containing the voting session parameters is displayed (A.6).
Three parameters are required to connect to a voting session:

e The network name (SSID)
e The group number

e The group password

Appendix A. User handbook 87

‘ﬁ]@ Network configuration

YOUR IDENTIFICATION YOUR IDENTIFICATION
Peter Smith Peter Smith
NETWORK CONNECTION FOR VOTING NETWORK CONNECTION FOR VOTING

USE NETWORK "MOBIVOTENET"

ADVANCED NETWORK CONFIGURATION

Figure A.4.: Network configuration Figure A.5.: Advanced configuration

These three parameters need to be distributed to all the persons who will be allowed to join the
electorate of the vote. To do so, MobiVote provides three ways.

e Plain text: All three parameters are communicated visually or orally as plain text. The
participants can enter them when joining a voting session.

e QR-code: The three parameters are encoded in a QR-code which is displayed on the same
screen. This QR-code can then be scanned using the camera of the participant’s devices.

e NFC tag: The three parameters are written to a NFC tag. A NFC tag is a small magnetic
storage token. An example of a NFC tag is depicted in A.7. This tag can then be passed
along the participants who can scan the tag by tapping it to the back of their device. Please
note that NFC functionality is only available in devices of the latest generation.

Of course it is also possible to use a combination of these three options. Using one of the sharing
methods above, the participants can now join the voting session.

A.8. Join a voting session as a participant

Voter only Once the administrator has announced the session parameters, the participants can
join the session using one of the sharing methods outlined in the previous section. After starting
up the MobiVote app, the participants now chooses the option [Join electorate|. First, you need to
enter an identification into the according textbox at the top of the screen A.8. This value defines
how you will be represented in the voting session. Most likely you will want to enter your name
into this box. This value will be saved on the device and will be proposed in upcoming sessions,

Appendix A. User handbook 88

(@ Network information

NETWORK NAME
mobivotenet

GROUP NUMBER

GROUP PASSWORD
saimmcgmdwyth

OFH0

WRITE NFC TAG

YOUR IDENTIFICATION
Peter Smith

Figure A.7.: NFC tag

& MODIFY NEXT >

Figure A.6.: Network information

but you can change this representation anytime you want to. Next, one of the following methods
to join can be chosen:

e Scan QR-code: Using this method, the QR-code displayed on another device can be cap-
tured using the camera of the device. After the successful capture, the device is automatically
joined into the voting session. In case the session takes place on a secure WLAN which is
not known on the device, the user will be prompted to enter the WLAN key. This method
is probably the easiest and fastest way to join a voting session.

e Use currently connected network: When choosing this option, the WLAN to which
the device is currently connected will be used. The user will be prompted to enter the
password and the group number (A.9). These values are both displayed on the device of the
administrator who established the voting session.

e Advanced network configuration: This option provides you with a list of currently avail-
able WLAN configuration (A.10). In order to join the voting session, you need to choose
the WLAN which is displayed on the screen of the administrator’s device. You will then be
prompted to enter the password and the group number according to the parameters provided
by the administrator.

e Scan NFC tag: This option can be used if you want to use a NFC tag which has been
passed to you from the vote administrator (A.11). After tapping the NFC tag to the back
of the device, the device automatically connects to the voting session. In case the session
takes place on a secure WLAN which is not known on the device, the user will be prompted
to enter the WLAN key. Please note that this option is only available on devices on which
NFC functionality is available.

Appendix A. User handbook 89

4 Network configuration

YOUR IDENTIFICATION

Peter Smith

NETWORK CONNECTION FOR VOTING

SCAN QR-CODE

SCAN NFC TAG

USE NETWORK "MOBIVOTENET'

ADVANCED NETWORK CONFIGURATION

Figure A.8.: Join electorate

YOUR IDENTIFICATION

Peter Smith

NETWORK CONNECTION FOR VOTING
T e

o—

P

-_____ '1:

[P —
W p—
]1) e

Figure A.10.: Advanced configuration

Appendix A. User handbook

Join group

) saimmcgmdwyﬁ

Cancel

el idd el Bl N yu'i op
2l IS (el K Kenl Rl B Rkl R
1 Z & lel 4 (B |0l im <

73 i
sym

Figure A.9.: Enter password

Network configuration

YOUR IDENTIFICATION

Peter Smith

NETWORK CONNECTION FOR VOTING

Put a NFC tag in proximity of your
device...

Figure A.11.: Scan NFC tag

90

A.9. Define the electorate

As soon as all participants were able to join their devices to the voting session, the administrator
can forward to the next screen by clicking on . In the following screen A.12, the administrator
can approve all the joined participants by clicking on the checkbox next to the allowed participants.
Each action reflects immediately on all the joined devices (A.13). Please note that the administrator
can include or exclude themselves in the electorate.

CN M Débogage USB active
¢[#] Electorate selection ¢[#] Electorate
PARTICIPANTS o
Please wait...
E Alice Parker il
) E Alice Parker % 4
E Peter Smith 7 i

E Peter Smith J

E John Doe
E John Doe @

Figure A.12.: Admin defines electorate Figure A.13.: Display electorate

A.10. Review the vote

After having defined the electorate, the administrator can move along the process by clicking on
the button. This leads to the review screen (A.14), where all the participants see a summary
of the vote and its electorate. All participants have to agree on this setup by clicking on the
checkbox next to their identification. In case some participants disagree, the administrator can
always go back and adjust the electorate. Once all the participants have agreed on the setup, the
administrator can start the actual voting period by clicking on the button [Start voting period |,

A.11. Voting

In the voting screen (A.15), each participant can select the preferred option. After confirming the
choice, the vote is encrypted and cast. The following screen A.16 summarizes which participants
cast their votes and which did not. The administrator has the option to interrupt by clicking on

Appendix A. User handbook 91

Vote review

QUESTION

14:00

?

Which is the best ski resort in

Switzerland?

OPTIONS

Grindelwald
Adelboden

Zermatt
4 Vallées

PARTICIPANTS
E Peter Smith

E Alice Parker

E John Doe

THRESHOLD

2

Figure A.14

.. Vote review

, in which case no results are obtained. The administrator can also choose the option
[Finish vote), in which case the vote is tallied and the results are displayed. The tally of the vote
starts automatically as soon as all participant have cast their votes.

QUESTION

Which is the best ski resort in
Switzerland?

OPTIONS

Grindelwald
Adelboden

Zermatt

4 Vallées

Figure A.15.: Vote screen

Appendix A. User handbook

te progress

Thanks for voting!
Waiting for ballots...

Cast ballots: 1 of 3

E Peter Smith A

E Alice Parker
E John Doe

X CANCEL VO.. B FINISH VOTE

Figure A.16.: Waiting for ballots

92

A.12. Display the result

After a successful tally, you will be redirected to the result screen (A.17) where the result of the
vote is displayed along with some statistics. The vote is archived and can be accessed anytime
using the option on the main screen. The administrator has the possibility to repeat
the vote. This comes in handy if several voting round are required to reach a decision.

Twoni]
< Vote result

QUESTION

Which is the best ski resort in
Switzerland?

RESULT CHART

4 Vallées— y ~Grindelwald

OPTIONS
s 1 ballot
Grindelwald sapa
1 ballot

Zermatt 330%

1 ballot

4 Vallées 3T0%

) REPEATV.. & EXPORT

Figure A.17.: Result of the vote

A.13. Vote archives

The vote archive (A.18), which is accessible through the main screen, lists all the past votes.
Unwanted votes can be deleted using the trash icon on the right side. An individual vote including
the results can be examined in further detail by clicking on the according list item. If you want to
run the exact election again, the button can be used to recreate an empty vote which
can then be started in the usual manner. The button allows to export the transcript of this
vote to an XML file. This file could be used to verify that the vote has been done correctly.

Appendix A. User handbook 93

Appendix A. User handbook

ARCHIVED VOTES

Which is the best ski resort
in Switzerland?

m

Figure A.18.: Vote archives

94

	Introduction
	Background and Related Work
	Theory
	Protocol to Implement
	Graphical User Interfaces
	Benchmarks
	Summary

	Practice
	Organization
	Specifications
	Implementation
	Results
	Future Work
	Summary
	Conclusion
	References
	User handbook

