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Abstract

A large number of papers make the assumption that secure bulletin boards exist.
Nevertheless there is no broadly recognized realization.

In this master thesis we identify the requirements and present a solution. Our
distributed protocol running at n parties provides the assurance that a message will
never be modified or deleted and that the order in which the messages are posted
will stay the same. Also, the board is available for reading to everybody and for
writing to every authorized user. These properties are true when less than one third
of the parties are corrupt or not available.
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1. Introduction

More and more data are published on the Internet everyday. How can we ensure that
the displayed content has not been modified? In serious contexts (e.g., e-voting) it
is essential to prove the correctness of the data.

Using a secure bulletin board, authorized users will be able to post messages and
have the assurance that they will never be changed, moved or deleted. Also, the
messages will be available to everyone. Unfortunately, even if the existence of the
secure bulletin board is broadly assumed, the information about its requirements or
a working solution remain poor.

The goal of this paper is to describe a working solution that produces correct
results even in presence of actively corrupt parties. The basis of our work are the
paper of R.A. Peters [Pet05] and the protocols described by M.K Reiter in [Rei96]
and [Rei94].

This report is organized as follows: first, the possible applications, requirements
and actors of a secure bulletin board are identified. In Section 3, we introduce
our solution. Section 4 contains a formal description of the necessary protocols.
Section 5 describes the way we implemented the protocols and finally, Section 6 is
the conclusion.
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2. Informal Description of a Bulletin
Board

A bulletin board is responsible for publishing something and giving the proof that
its content has not been altered.

2.1. Typical Applications

2.1.1. E-voting

Voters want to be sure that their ballots have been counted correctly and that they
have the possibility to revoke the vote otherwise. A bulletin board is responsible
for publishing the encrypted ballots and providing a receipt. At the end the votes
are decrypted and published (without anyone knowing the link from encrypted to
decrypted votes). It is then possible to count the decrypted ballots. To ensure that
both parts correspond without linking them, zero knowledge proofs described in
[Kra07] are used. If a ballot is missing, the voter can prove it by giving his receipt.

2.1.2. Auctions

A bidder who wishes to place a bid wants to receive a proof for it, otherwise anyone
could refute his bid. The sequence is very important here.

2.1.3. Auditable Discussion Boards

For evident reasons, it could be interesting to provide a forum with a secure history.

2.1.4. System Logs

Logs are system activities written in text files. It is useful to have security here if
we do not trust the logger.

2.1.5. Online Petitions

In the context of online petitions, security could be needed, for example, to prove
that the text of a petition hasn’t been changed.

2.2. Requirements

The following requirements should be satisfied by every implementation of a bulletin
board:
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R1. Availability: Each authorized user is able to successfully publish messages on
the board. Similarly, everybody should be able to read the content of the
board.

R2. Unalterable History: Once published, messages should not be removed or mod-
ified without notice. Moreover, no message should be moved to another posi-
tion and the new ones should be placed at the end.

R3. No single point of failure: There should be no single point of failure. If a
component is corrupt or simply stops working for any reason, this should not
have any consequence for the system. For the same reason, trusted third
parties should be avoided.

R4. Failure Detection: If those properties are not respected, the users are able to
prove it.

Those requirements must be fulfilled even in the presence of corrupt components.

2.3. Actors

Three types of actors exist. Some of them are active (modifying the data) and some
are not:

Bulletin Board The bulletin board contains a possibly empty list of messages, the
history. It is responsible for allowing the writers to publish information and
making it accessible to any of the readers. The board itself is not allowed to
post. The content of the messages (data and metadata) is verified by the board
itself before being added to its history. The bulletin board is also responsible
for ensuring that its content does not change and is able to detect it if it does.

Writer The writer is active. He is the only user allowed to post information on the
bulletin board and is responsible for generating the necessary metadata (e.g.,
digital signature) to be sent to the board.

Reader The reader is not active but is still very important. Each time he reads the
data, the validity of the history is tested.
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3. Approach

In this chapter, we introduce the problem we have to solve and the protocols we will
use so that the requirements described in Section 2.2 can be satisfied.

3.1. A Distributed Solution

In order to avoid a single point of failure, we need a distributed protocol running
at n parties. A party is either correct or faulty. Correct parties are honest and
always respond correctly within some timeout, while faulty parties either respond
too late, not at all, or incorrectly. An honest party having connection troubles will
be considered faulty so that the protocol can make progress.

As there are many parties, they must reach consensus on the history (the list of
messages). As required, our solution must tolerate the presence of faulty compo-
nents.

In other terms, we want to reliably and atomically multicast messages in a group
that possibly contains corrupt members.

3.2. Byzantine Generals Problem

The problem we have to solve is the so-called Byzantine Generals Problem. The
following extract is taken from [LLP82]:

A reliable computer system must be able to cope with the failure of one or more
of its components. A failed component may exhibit a type of behavior that is often
overlooked–namely, sending conflicting information to different parts of the system.
The problem of coping with this type of failure is expressed abstractly as the Byzan-
tine Generals Problem.

3.3. Bounds on the Number of Faulty Parties

We cannot expect our solution to work correctly if every party is corrupt. However,
we must tolerate a few faulty parties. As shown in [LLP82], the Byzantine Generals
Problem is solvable if and only if more than two thirds of the generals are loyal.
Thus, our protocol tolerates at most bn−13 c faulty parties or, similarly, at least
d2n+1

3 e parties must be correct.
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3.4. Protocols

As represented in Figure 3.1, our solution is composed of several layers of protocols,
described later in this section. The lowest layer is the network, which is used to send
data to the other parties.

Synchronized Multicast Protocol

Atomic Multicast Protocol

Reliable Multicast Protocol

Echo Multicast Protocol

Secure Group Membership Protocol

Network

Application

uses 

Figure 3.1.: Protocols stack

3.4.1. Rampart

The secure broadcast channel used in Rampart [Rei94] is the basis of our work.
It is a distributed solution composed of several layers: the Echo Multicast Protocol,
the Reliable Multicast Protocol and the Atomic Multicast Protocol. The protocols
presented here are more detailed in chapter 4.

The Echo Multicast Protocol

The Echo Multicast Protocol, represented in Figure 3.2, is the core protocol. It is
used by honest parties to ensure that all other parties receive a certain message. To
simplify the understanding we state that a single party p0 sends at most one message
m. Party p0 has to convince the other parties that it sent the same m to everyone.
It starts by sending a message 〈init: m〉 to everyone. When a party pi receives this
message, it answers by digitally signing it: 〈echo: m〉Ki . Once p0 receives d2n+1

3 e
echoes for m, it sends them to all members in a message 〈commit: {〈echo: m〉Ki}〉,
giving the proof that m is the message sent to everyone.
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P1

P2

P...

Pn

time

‹init: m› 

‹echo: ‹echo, m›Ki› 

‹commit:{‹echo, m›Ki}pi∈P› 

Figure 3.2.: Simplified Echo Multicast

The Reliable Multicast Protocol

The Reliable Multicast Protocol uses the Echo Multicast Protocol and ensures that
the received messages are the same at each party, even if a message is sent by a
corrupt party.

The Atomic Multicast Protocol

The Atomic Multicast Protocol uses the Reliable Multicast Protocol and ensures
that the messages are received in the same order by every party.

3.4.2. Group Membership Protocol

The three layers used in Rampart are built on the top of the Secure Group Mem-
bership Protocol described in [Rei96]. With this protocol, each member maintains a
view of parties V x, which is the set of active and responsive parties. Once a member
suspects another one of being faulty, it votes to remove it from the group. When
enough parties have done the same, the faulty member is removed. A new group
view V x+1 is formed, which then becomes the current view. Similarly, a new group
is formed if enough members want to add a new party. This protocol is detailed in
Section 4.4.

3.4.3. Synchronization Protocol

Since we want to offer the possibility to add a new party in the group, an atomic mul-
ticast is not enough. New parties or parties that have been removed and later rejoin
the group have missed messages. An extra layer is introduced so that joining parties
can safely recover messages they did not receive. It is the Synchronized Atomic
Multicast Protocol defined in [Pet05] and described in more details in Section4.8.

7



3.4.4. Application

Additionally to the previous protocols, we need a write, a read and a consolidation
protocol so that a multicast can be used to implement a bulletin board. Write and
read protocols are used between a client and a party, whereas the Consolidation
Protocol is used between emphn parties. They all are built in the application layer
and can differ depending on the context.

A client who posts a message on the board will receive a threshold signature as
receipt. Threshold signatures are made of signature shares combined into a single
signature. We assume such a solution is available, but this remains out of scope of
this document. See [Sho00] for more details.

When a client wants to write something on the board, he randomly selects a party
who will broadcast the message and request threshold signature shares. These shares
combined form a receipt which is returned to the client as a receipt.

When a client wants to read the messages on the board, it sends a nonce which
will be broadcast by a randomly selected party. A signature constructed on the
messages and the challenge is returned together with the messages. Since each
party has exactly the same sequence of messages, only a signature share needs to
be transmitted to the selected party. The messages and the threshold signature are
sent by the selected party to the client. This works under the assumption that no
writes occur during the read operation.

3.5. A Scenario

When examining a scenario, only the Write, Read, Consolidation and Echo Multi-
cast Protocols are of interest. Indeed, without corrupt parties, the actions performed
in the other layers take a constant amount of time.

When a client c writes a message m on the bulletin board consisting of parties P ,
the following steps are executed:

1. Client c sends a message m to some party p ∈ P .

2. Party p sends 〈init: m〉 to every p′ ∈ P .

3. Each p′ answers with a signed message 〈echo: m〉Kp′ .

4. After receiving d2n+1
3 e messages, p sends 〈commit: {〈echo: m〉Kp′}p′∈P ′⊂P 〉

to every party, where P ′ is the subset of parties from which messages
have been received.

5. After p′ receives the commit message, it persists the message, com-
putes a signature share and sends it to p.

6. Party p combines the shares into a single signature and sends it to c.

When a client c reads all messages on the board, the following steps are executed:

1. Client c chooses a nonce d and sends it to some party p ∈ P .

2. Party p sends the challenge to each p′ ∈ P .

3. Each p′ creates a signature share over the messages and sends it to p.
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4. Party p combines these shares into a single signature and sends it
together with the messages to c.
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4. Specifications of the Protocols

The protocols presented in this chapter are described in an event-driven way. That
means that once a message is sent, it starts the appropriate action at the receiving
party or layer. The exact notation is described in Section 4.2.

4.1. Requirements

Additionally to those presented in Section 2.2, our distributed solution has to satisfy
the following requirements:

R5. Broadcast: If an honest party sends a message to the bulletin board, every
correct party receives that message.

R6. Agreement: Once a message has been successfully sent to the board, every
correct party receives the same message.

4.2. Notation

In this section, we introduce the notation used to describe the different protocols.

Parties. The different parties are defined:

pt: this party.

ps: the party who sent a message.

pm: the manager of the actual view.

pd: a party acting as deputy.

pc: a party we want to change (add or remove)

Messages. The protocols or parties communicate with each other using messages.
The messages are described in the form 〈type: ∗〉. The symbol ∗, used to
mean ”anything”, represents the list of arguments contained in the message:
〈type: a1, ..., an〉, n ≥ 0.

A message can be either vertical or horizontal. Vertical messages are sent
between layers at the same party. Horizontal messages are sent between parties
and are assumed to be sent in a reliable and confidential way. In practice, this
is done by another protocol layer.

Sending messages to other parties or other layers is done as follow:

send 〈type: ∗〉 to pi: send a message to another party pi.

send up 〈type: ∗〉: send a message to one or more upper layer(s).

send down 〈type: ∗〉: send a message to exactly one lower layer.
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Receiving messages from other parties or other layers is done as follow:

On message 〈type: ∗〉 from source: action

When a message containing a signature is received, its validity is implicitly
verified. If the signature is wrong, the message is discarded and no action is
performed.

Collections. We use two types of collections in our protocols: sets and sequences.
The first element of the collections has index 1 and the last has index n. The
symbol Ø represents an empty collection. Moreover, collections variables start
with a capital letter.

Sets are collections of unordered and distinct elements. The following notation
is used:

S = {e1, ..., en}: the set S

S := S ∪ {e}: the element e is added in S

S := S \ {e}: the element e is removed from S

|S|: the number of elements in s

Sequences are collections of ordered elements. The following notation is used:

S = (s[1], ..., s[n]): the set S

S[1]: the first element (the head) of S

S[2..]: the tail of S

S := S | e: the element e is pushed in S

e, S := S[1], S[2..]: the element e is popped from S

|S|: the number of elements in S

Timers. So that the protocols do not wait forever on a message that is not coming,
timers are introduced. Two different constructions exist:

Periodically: an action which is periodically executed.

On timeout 〈identifier: ∗〉: triggered a short time after the protocol
executed start timer 〈identifier: ∗〉.
Note that timers and messages have a similar form. To stop a timer if the
awaited message is received, the protocol executes stop timer 〈identifier: ∗〉.
The command has no effect if the timer was already triggered.

Hash function. A hash function f(m) is an algorithm or subroutine that maps large
data sets m to smaller data sets d and that is collision free in practice. It should
not be computationally possible to find two inputs m and m′ mapping to same
hash value d. f(m) 6= f(m′). Moreover, a hash function is one-way. We can
not find m if we only know d.

Digital signatures. Digital signatures are in the form 〈∗〉Ki , where Ki is the key of
the party pi and ∗ the content. Note that this does not mean that the content
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is sent. For example in a message 〈echo: x, l, 〈echo, ps, x, l, d〉Ki〉, the variable
d is used in the signature but not sent. This is because the addressee can
deduct d from parameters x and l.

In order to prevent a signature to be used for a different purpose or to be
re-used, an unique identifier is used. As you will see later, additionally to the
parameters, we include an identifier (echo in the example above) and the index
of the view in each signature.

4.3. Assumptions

Many assumptions are needed in order to achieve our security requirements:

A1. Digital signatures can be verified by everybody but only the owner of the private
key is able to produce them.

A2. A solution to publish the public keys exist (e.g., PKI) so that all actors know
the public keys of all writers and parties of the board, but private keys remain
secret.

A3. As no trusted third party is allowed, each party must be able to generate its
own key pair.

A4. Communication between different parties is done using security mechanisms,
able to provide privacy, authenticity and integrity.

A5. If hash functions are used, they are collision-resistant. Two distinct terms will
almost never result to the same hash value.

A6. The bulletin board is responsible for ensuring the correctness of the data pro-
vided by the writers.

A7. Every time a message containing a signature is received, its validity is verified.

A8. In each view V , at most b |V |−13 c parties are faulty.

A9. A threshold signature scheme is available and can be used to generate receipts
for the clients.

4.4. The Secure Group Membership Protocol

The Secure Group Membership Protocol described in [Rei96] ensures that in a set
of parties P , the honest parties agree on a subgroup of correct parties. For that
purpose, each party pi maintains a view V x

i , consisting of the currently operational
parties. Every time a party is added or removed from the group, the view changes
and the index x, denoting the x-th view, is incremented. When a party creates
its view V x

i , view V x
i is said to be defined, and undefined otherwise. The protocol

assures that all x-th views at each correct party are the same. Therefore, the index
i is usually omitted: V x denotes the x-th view. The first view V 0, is manually
configured by an administrator.
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Members of a current view can add new parties or remove faulty parties. When
a party pi ∈ V x discovers that pj ∈ V x is faulty, faulty(pj) is said to hold at pi.
Otherwise, correct(pj) holds at pi.

4.4.1. Informal Description

The parties in the group are totally ordered using their public keys. The lowest
rank is 1 and the highest rank is n. The function rank(pi) determines the rank of
party pi. The party with rank n acts as the manager. Its responsibility is to propose
updates to the group members. When a party suspects another party pc to be faulty
or wants a new party to be added, it reports it to the manager in a notify message.
Once the manager received b(|V x| − 1)/3c+ 1 same requests, it knows that at least
one honest party wants an update and sends a suggestion to the view. An honest
party receiving a suggestion from the manager answers with an ack message. Once
the manager received d(2|V x|+ 1)/3e ack messages, it sends a proposal to the view.
Every party responds with a ready message, and after receiving d(2|V x| + 1)/3e
ready messages, the manager broadcast a commit message, upon which a new
view is formed. The messages are broadcast as follow: a party pt receiving a com-
mit message sends it to the parties with a rank = rank(pt) + r mod |V |+ 1, where
0 ≤ r ≤ b(|V | − 1)/3c. As each party sends the message to at least one correct
party, we are sure that every party receives the message. Figure 4.1 represents the
protocol when the manager is correct:

Pn

P...

P2

P1

time

(manager)

‹commit: pc, pn, 
{‹ready, pn, pc›Ki}pi∈P’’› 

‹ready: pc, 

‹ready, pn, pc›Ki›

‹proposal: pc,
{‹ack, pn, pc›Ki}pi∈ P’› 

‹ack: pc, 
‹ack, pn, pc›Ki›

‹suggest: pc,
{‹notify, pc›Ki}pi∈P› 

‹notify: pc, 
‹notify, pc›Ki›

Figure 4.1.: Protocol when the manager is correct

If the manager is suspected of being faulty, a party sends a deputy message to
pd, the correct party with the highest rank. When a party receives b(|V x|−1)/3c+1
messages of that kind, it sends a query message to the view. Each honest party
answers with a last message, possibly containing the last proposal sent by the pre-
vious manager. The deputy pd sends a suggest-last message to the group, upon
which each party answers with an ack message. From here, the messages are the
same as those with a correct manager: once the deputy received d(2|V x| + 1)/3e
ack messages, it sends a proposal to the view. Every party responds with a ready
message, and after receiving d(2|V x| + 1)/3e ready messages, the deputy sends a
commit message, upon which a new view is formed. In Figure 4.2, the manager pn
is faulty and replaced by the deputy pn−1. Note that the last proposal lp is empty
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in the following example:

Pn

Pn-1

P...

P1

time

(manager)

(deputy)

‹deputy: 
‹deputy, pn-1›Ki› 

‹query: 
{‹deputy, pn-1›Ki}pi∈P› 

‹suggest-last: lp,
{‹last, pn-1, lp›Ki}pi∈P› 

‹proposal: pn,
{‹ack, pn-1, pn›Ki}pi∈P› 

‹last: lp,
 ‹last, pn-1, lp›Ki› 

‹ready: pn,
 ‹ready, pn-1, pn›Ki 

‹commit: pn, pn-1,
{‹ready, pn-1, pn›Ki}pi∈P› 

‹ack: pn,
‹ack, pn-1, pn›Ki› 

Figure 4.2.: Protocol when the manager is faulty
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A corrupt manager may try to convince a party pi to do one update and an-
other party pj to do another update. Before a manager can propose an update,
it must accumulate d(2|V x| + 1)/3e ack messages. To avoid the possibility that a
manager obtains two different sets of ack messages, an honest party is allowed to
create only one ack message in each view. Under the assumptions that at most
b(|V x|−1)/3c parties are faulty and thus at least d(2|V x|+1)/3e parties are correct,
it is now infeasible for a manager to obtain two different sets of ack messages. Even
if corrupt parties create two different ack messages: 2 ∗ (b(|V x| − 1)/3c), and the
correct parties one: d(2|V x|+ 1)/3e, the sum of them is smaller than the necessary
amount to create two different sets of ack messages: 2 ∗ (d(2|V x|+ 1)/3e). We thus
have the assurance only one change can be orchestrated by the manager in each view.

It may seem that if a party receives a correct proposal message, it has enough
information to form the new view. Indeed, only one proposal message can be
formed and using broadcast, we have the assurance that every party receives that
proposal. However, there is still a problem, since before the proposal would arrive
at every party, a deputy may want to remove the manager. A situation could occur
where some parties remove the manager and some other follow the proposal sent by
the manager. To prevent this situation, the manager sends the proposal, receives
ready responses from the other parties and combines them in a commit message.
Now if some party receives a commit message while a deputy tried to remove the
faulty manager, the deputy receives the last proposal with its query message and
follows that proposal instead of removing the manager. Agreement of the group is
now maintained.

The SGM Protocol

The pseudocode in Section 4.4.5 is the translation of the protocol presented in the
appendix A of [Rei96].

The adds messages, introduced in [Pet05], are used by the Reliable Multicast
Protocol to prevent that no progress is made when several parties are corrupt. If
several corrupt parties need to be removed in order to deliver a message of the next
view, additions of new members to the current view is held until that view is really
delivered. Otherwise, corrupt parties could be added and removed over and over
again without making progress.

The SGM-View Protocol

The Secure Group Membership Protocol uses the SGM-View Protocol as a subpro-
tocol to manage one particular view. If a new view is created, the protocol finishes
and a new instance is created. The subprotocol is initialized with two arguments:
the index of the view x and the set of parties V x in it.
As a general rule, each time a message is received, the view in which it was sent is
tested. If it is intended to a future view, it is pushed in the sequence Deferx of the
SGM protocol, otherwise it is directly processed. For brevity, this is omitted in the
pseudocode.
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In the next protocols, the following conventions are used: pt (this party) is the
party executing the protocol, pc (change party) is the party a change request is
made, ps (sender party) is the sender of a message, pm (party manager) is the party
with the manager role and pd (deputy party) is the party with the deputy role.

4.4.2. Properties

The protocol ensures the following properties [Pet05]:

Uniqueness If pi and pj are correct and V x
i and V x

j are defined, then V x
i = V x

j .

Validity If pi is correct and V x
i is defined, then pi ∈ V x

i and for all correct pj ∈ V x
i

it holds that V x
j is eventually defined.

Integrity If pi ∈ V x\V x+1, then faulty(pi) held at some correct pj ∈ V x, and if
pi ∈ V x+1\V x, then correct(pi) held at some correct pj ∈ V x.

Liveness If there is a correct pi ∈ V x such that correct(pi) holds at d(2|V x|+ 1)/3e
correct members of V x, and a party pj ∈ V x or a party pk /∈ V x such that
faulty(pj) holds at b(|V x|− 1)/3c correct members of V x or correct(pk) holds
at b(|V x| − 1)/3c correct members of V x, then eventually V x+1 is defined.

4.4.3. Interface

The following messages are received from an upper layer:

〈faulty: pj, x〉: when a party suspects another party pj of being faulty
in view x.

〈correct: pj, x〉: when a party wants another party pj /∈ V x to join
the group.

〈adds: x〉: a message defined in [Pet05] so that no party can be added
until this message has been sent in view x.

The following message is sent to one or more upper layer(s):

〈view: x〉: when a new group view with index x is created.

4.4.4. Variables

x: the index of the current view, x ≥ 1

V : sequence containing sets of parties. V x contains the parties in view x

P : the first set of parties (V 1)

History : set containing each modification of the group

Deferx: sequence containing the messages intended to a future view

Correct : set containing parties we want to add to the group

Faulty : set containing the parties we suspect of being faulty

Adds: boolean variable which is true if an adds message has been
received in the actual view
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ProtocolState: monotonically decreasing variable used to be sure that
pt processes only one message of each following types: suggest,
proposal, query and suggest-last

LastProposal : the last proposal sent by the manager

MDState: used so that messages are processed in a coherent order by
the manager/deputy

18



4.4.5. Pseudocode

Protocol SGM-View (member role) for party pt

Initially (x, V x):
x := x
LastProposal := NIL
V := V x

pm := p ∈ V x where rank(p) ≥ rank(q) ∀q ∈ V
ProtocolState := 3|V |
MDState := begin

On message 〈faulty: pc〉 from an upper layer :
send 〈notify: x, pc, 〈notify , x, pt, pc〉Kt〉 to pm
start timer 〈remove-manager〉
if rank(p) < rank(pc) ∨ faulty(p) ∀p ∈ V then

Let pd ∈ V such that correct(pd) ∧ (rank(pi) ≤ rank(pd) ∨ faulty(pi) ∀pi ∈ V )
send 〈deputy: x, 〈deputy , x, pd〉Kt〉 to pd

On timeout 〈remove-manager〉:
Let pd ∈ V such that correct(pd) ∧ (rank(pi) ≤ rank(pd) ∨ faulty(pi) ∀pi ∈ V )
send 〈faulty: pd, x〉 to SGM

On message 〈correct: pc〉 from an upper layer :
send 〈notify: x, pc, 〈notify , x, pt, pc〉Kt〉 to pm
start timer 〈remove-manager〉

On message 〈suggest: x, pc,NotifySet〉 from ps:
if ps = pm ∧ 3 rank(pm)− 1 < ProtocolState ∧ |NotifySet | = b(|V | − 1)/3c+ 1 then

ProtocolState := 3 rank(pm)− 1
send 〈ack: x, pc, 〈ack , x, pm, pc〉Kt〉 to pm

On message 〈proposal: x, pc,AckSet〉 from ps:
if 3 rank(ps)− 2 < ProtocolState ∧ |AckSet | = d(2|V |+ 1)/3e then

ProtocolState := 3 rank(ps)− 2
LastProposal := 〈ps, pc,AckSet〉
send 〈ready: x, pc, 〈ready , x, ps, pc〉Kt〉 to ps

On message 〈commit: x, pc, pd,ReadySet〉 from ps:
if |ReadySet | = d(2|V |+ 1)/3e then

send 〈commit: x, pc, pd,ReadySet〉 to p with rank = rank(pt) + r mod |V |+ 1,
where 0 ≤ r ≤ b(|V | − 1)/3c

stop timers 〈remove-manager〉
send 〈view: pc, pd,ReadySet〉 to SGM

On message 〈query: x,DeputySet〉 from ps:
if 3 rank(ps)− 2 < ProtocolState ∧ |DeputySet | = b(|V | − 1)/3c+ 1

ProtocolState = 3 rank(ps)
send 〈last: x,LastProposal , 〈last , x, ps,LastProposal〉Kt〉 to ps

Listing 4.1: Secure Group Membership View
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On message 〈suggest-last: x,LastSet〉 from ps:
if 3 rank(ps)− 1 < ProtocolState ∧ |LastSet | = d(2|V |+ 1)/3e then

LowestRank := |V |+ 1
LowestUpdate := pm
for each 〈pd, pc,AckSet〉 ∈ LastSet do

if rank(ps) < rank(pd) < LowestRank ∧ |AckSet | = d(2|V |+ 1)/3e then
LowestRank := rank(pd)
LowestUpdate := pc

ProtocolState := 3 rank(ps)− 1
send 〈ack: x,LowestUpdate, 〈ack , x, pt,LowestUpdate〉Kt〉 to ps

Listing 4.2: Secure Group Membership View (continued)

Protocol SGM-View (manager/deputy role) for party pt

On message 〈notify: x, pc, 〈notify, x, ps, pc〉Ks〉 from ps:
NotifySetc := NotifySetc ∪ {〈ps, 〈notify, x, ps, pc〉Ks〉}
if MDState = begin ∧ |NotifySetc | = b(|V | − 1)/3c+ 1 then

send 〈suggest: x, pc,NotifySetc〉 to each p ∈ V
MDState := sent-suggest

On message 〈ack: x, pc, 〈ack, x, pt, pc〉Ks〉 from ps:
AckSetc := AckSetc ∪ {〈ps, 〈ack, x, pt, pc〉Ks〉}
if MDState = sent-suggest ∧ |AckSetc | = d(2|V |+ 1)/3e then

send 〈proposal: x, pc,AckSetc〉 to each p ∈ V
MDState := sent-proposal

On message 〈ready: x, pc, 〈ready, x, pt, pc〉Ks〉 from ps:
ReadySetc := ReadySetc ∪ {〈ps, 〈ready, x, pt, pc〉Ks〉}
if MDState = sent-proposal ∧ |ReadySetc | = d(2|V |+ 1)/3e then

broadcast 〈commit: x, pc, pt,ReadySetc〉 to each p ∈ V by sending to self

On message 〈deputy: x, 〈deputy, x, pt〉Ks〉 from ps:
DeputySet = DeputySet ∪ {〈ps, 〈deputy, x, pt〉Ks〉}
if MDState = begin ∧ |DeputySet | = b(|V | − 1)/3c+ 1 then

send 〈query: x,DeputySet〉 to each p ∈ V
MDState := sent-query

On message 〈last: x, LastProposal, 〈last, x, pt,LastProposal〉Ks〉 from ps:
LastSetLastProposal = LastSetLastProposal ∪ {〈ps,LastProposal , 〈last, x, pt, LastProposal〉Ks〉}
if MDState = sent-query ∧ |LastSetLastProposal | = d(2|V |+ 1)/3e then

send 〈suggest-last: x,LastProposal ,LastSetLastProposal〉 to each p ∈ V
MDState := sent-suggest

Listing 4.3: Secure Group Membership View (continued)
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Protocol SGM (member role) for party pt

Initially (Parties):
x := 1
History := Ø
Defer := Ø
Faulty := Ø
Correct := Ø
P := Parties
V x := P
View := new 〈SGM-View: x ,V x 〉
Adds := false

On message 〈faulty: pc, x
′〉 from an upper layer :

if pc /∈ Faulty then
Faulty := Faulty ∪ {pc}
if x′ = x then

send 〈faulty: pc〉 to View

On message 〈correct: pc, x
′〉 from an upper layer :

if pc /∈ Correct then
Correct := Correct ∪ {pc}
if Adds ∧ x′ = x then

send 〈correct: pc〉 to View

On message 〈Adds: x′〉 from an upper layer :
if x′ = x then

Adds := true
for each pc ∈ Correct do

send 〈correct: pc〉 to View

On message 〈view: pc, pc,ReadySet〉 from view:
x := x + 1
History := History ∪ {〈x, pc, pd,ReadySet〉}
if pc /∈ V x−1 then

send 〈history: History〉 to pc
V x := V x−1 ∪ {pc}
Correct := Correct\{pc}

else
V x := V x−1\{pc}
Faulty := Faulty\{pc}

Adds := false
V iew := new 〈SGM-View: x ,V x 〉
send 〈faulty: p〉 to View for each p ∈ Faulty
send up 〈view: x〉
while Deferx 6= Ø
〈type, parameters, ps〉,Deferx = Deferx [1 ],Deferx [2..]
send 〈type, parameters〉 with sender ps to View

Listing 4.4: Secure Group Membership Protocol
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On message 〈history: History ′〉 from ps:
done := false
while 〈x + 1, pc, pd,ReadySet〉 ∈ History ′ do

if done := false then
if |ReadySet | = d(2 ∗ |V x|+ 1)/3e then

x := x + 1
History := Hystory ∪ {〈x, pc, pd,ReadySet〉}
if pc /∈ V x−1 then

send 〈history: History〉 to pc
V x := V x−1 ∩ {pc}
Correct := Correct\{pc}

else
V x := V x−1\{pc}
Faulty := Faulty\{pc}

if pc = pt ∧ pc /∈ V x−1

send 〈commit: pc, pd,ReadySet〉 to each p ∈ V x

View := new 〈SGM-View: x ,V x 〉
done = true

else
done := true

Listing 4.5: Secure Group Membership Protocol (continued)

4.5. The Echo Multicast Protocol

The Echo Multicast Protocol is the core component of the Reliable and Atomic
Multicast protocols. It ensures that each echo multicast message sent by p in the
view x are the same at each honest party. In absence of membership changes, a
reliable multicast reduces to a single echo multicast.

4.5.1. Informal Description

To expand the protocol presented in Section 3.4.1 so that different parties can send
multiple messages in different views, we include the initiator p1, the index of the
view x and a sequence number l in the echo message. A message digest is also used
in init and echo to reduce the amount of data transmitted on the network. Now,
if a party multicasts a message, it stores its index l and each party also stores the
number of messages received from other parties in a variable lxp . When a party p1
requests signatures on a particular message m on index l, each party answers with
the message 〈echo: x, l, 〈echo, p1, x, l, f(m)〉Ki〉. This way, using x, p, l and f(m),
each message is unique and identifiable. This expanded version of the protocol is
presented in Figure 4.3.

Using index l and a variable cxpi , we can also maintain a FIFO delivering order of
all messages sent by a given party pi. When a message 〈commit: x, l,m,EchoSetxl 〉
is received, it is stored in a Commitsx set. The variable cxpi contains the number of
messages coming from pi which have been delivered. We thus know the index of the
next message to be delivered from party pi. If the last message from pi had index z,
messages with an index higher than z + 1 are queued until the message with index
z + 1 is received.
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P1

P2

P...

Pn

time

‹init: x, f(m)› 

 

‹echo: x, l, ‹echo, 
p1, x, l, f(m)›Kj› 

‹commit: p1, x, m, {‹echo: x, l,
‹echo, p1, x, l, f(m)›Kj›}pj∈P› 

Figure 4.3.: Echo Multicast

After delivering a message, it stays in the Commitsx until it is stable. A message
is stable if every party has delivered it and thus added its index to cxpi . The parties
periodically send their own cxpi to the other members of the group in a message
〈counters: {cxpi}pi∈SGM.V x〉. Each party records those values in a variable cxpj ,pi .
When a party has a message from pi with index l in its Commitsx and cxpj ,pi is at least
l for each pj , it concludes that it is stable, sends up a message 〈e-mcast-stable:
pi, x,m〉 and removes the corresponding commit message from the set Commitsx .

If a message stays in the Commitsx for too long, it is sent to the parties which
have not yet delivered it. If after another timeout, some parties have still not deliv-
ered it, they are considered faulty and voted out from the group.

Using d(2|V x|+ 1)/3e signatures, we have the confidence that if at most b(|V x| −
1)/3c members are corrupt, a majority of honest members of V x echoed m. A
party trying to convince a member that m is the message and another member that
m’ is the message would have to obtain two sets of d(2|V x|+ 1)/3e signatures each.
Because a correct party provides only one signature and a majority of correct parties
echoed m, it is thus impossible to create those two different sets. Even if corrupt
parties create two different signatures: 2 ∗ (b(|V x| − 1)/3c), and the correct parties
one: d(2|V x|+1)/3e, the sum of them is smaller than the necessary amount to create
two different sets of signatures: 2 ∗ (d(2|V x|+ 1)/3e).

4.5.2. Properties

The protocol ensures the following properties [Pet05]:

1. If p1 is honest and some honest party transmits 〈e-mcast: p, x, m〉 to an upper
layer, then the Echo Multicast Protocol of p1 received a message 〈e-mcast: x,
m〉 from an upper layer.

2. If the l -th message of the form 〈e-mcast: p, x, ∗〉 at two honest parties are
〈e-mcast: p, x, m〉 and 〈e-mcast: p, x, m′〉, then m = m′.
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4.5.3. Interface

The following message is received from an upper layer:

〈e-mcast: x, m〉: to echo-multicast a message m in view x.

The following messages are sent to one or more upper layer(s):

〈e-mcast: p, x, m〉: sent when an echo-multicast message from party
p in view x has been received by pt.

〈e-mcast-stable: p, x, m〉: sent when an echo-multicast message from
party p in view x has been received by all members of V x .

4.5.4. Variables

lx: the number of messages echo multicast by this party in view x

lxp : the number of messages echo multicast by the other parties in view
x

lmx: pairs of indexes and messages echo multicast by this party in view
x

lmx
l : the l -th message echo multicast by this party in view x

cxi : for each party pi, the index of the last message from pi delivered by
this party in view x

cxj,i: the list cxi at each party pj as broadcast by pj

sxp : for each party p, the index of the last message that is stable in view
x

EchoSetxl : A set containing tuples made of a party and a signature.

Commitsx : the set of messages delivered in view x but not yet stable
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4.5.5. Pseudocode

Protocol EMP for party pt

Initially (SecureGroupMembershipProtocol):
SGM := SecureGroupMembershipProtocol
lSGM .x := 0
lmSGM .x := 0
for each p ∈ SGM .V SGM .x do

lSGM .x
p := 0
cSGM .x
p := 0
cSGM .x
p,pi := 0 for each pi ∈ SGM .V SGM .x

sSGM .x
p := 0

On message 〈e-mcast: x,m〉 from an upper layer :
lx := lx + 1
lmx

lx := m
for each p ∈ SGM .V x do

send 〈init: x, f(m)〉 to p

On message 〈init: x, d〉 FROM ps:
verify ps ∈ SGM .V x

lxps := lxps + 1
send 〈echo: x, lxps , 〈echo, ps, x, l

x
ps , d〉Kt〉 to ps

On message 〈echo: x, l, 〈echo, pt, x, l, d〉Ks〉 from ps:
verify ps ∈ SGM .V x

EchoSetxl := EchoSetxl ∪ {〈ps, 〈echo, pt, x, l, d〉Ks〉}
if |EchoSetxl | = d(2|V x|+ 1)/3e then

for each p ∈ SGM.V x do
send 〈commit: x, l, lmx

l ,EchoSetxl 〉 to p

On message 〈commit: x, l,m,EchoSetxl 〉 from ps:
verify ps ∈ SGM .V x

for each x′ ∈ [x,SGM .x ] do

verify ps ∈ SGM .V x′

AddToCommit(ps, x, l,m,EchoSetxl )

On message 〈view: x〉 from a lower layer :
lx := 0
lmx := Ø
for each p ∈ SGM .V x do

lxp := 0
cxp := 0
cxp,pi := 0 for each pi ∈ SGM .V x

sxp := 0

Listing 4.6: Echo Multicast Protocol
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Protocol EMP (stability) for party pt

Periodically:
send 〈e-mcast: SGM.x, 〈counters: {cxpi}pi∈SGM .V x 〉〉 to self

On message 〈e-mcast: ps, x, 〈counters: {c′xpi}pi∈SGM.V x〉〉 from self:
cxpj ,pi := c′xpi for each pi ∈ SGM.V x

for each s where sxp < s ≤ (↓ q ∈ SGM .V x :: cxq,p) do
stop timer 〈unstable: p, x, s〉
stop timer 〈remove-unstable: p, x, s〉
sxp := s
retrieve m and EchoSetxl from Commitsx

Commitsx := Commitsx \ 〈p, x, s,m,EchoSetxl 〉
send up 〈e-mcast-stable: p, x,m〉

On timeout 〈unstable: p, x, l〉:
retrieve m and EchoSetxl from Commitsx

for each p′ where l > cxp′,p do
send 〈make-stable: p, x, l,m,EchoSetxl 〉 to p

start timer 〈remove-unstable: p, x, l〉

On timeout 〈remove-unstable: p, x, l〉:
for each p′ where l > cxp′,p do

send down 〈faulty: p′〉

On message 〈make-stable: p, x, l,m,EchoSetxl 〉 from ps:
for each x′ ∈ {0, 1, ...,SGM .x} do

verify p ∈ SGM .V x ′

AddToCommit(p, x, l,m,EchoSetxl )

Listing 4.7: Echo Multicast Protocol (Continued)

Protocol EMP (procedures) for party pt

Procedure AddToCommit(ps, x, l,m,EchoSetxl ):
if cps < l ∧ 〈ps, x, l,m,EchoSetxl 〉 /∈ Commitsx then
verify |EchoSetxl | = d(2|SGM .V x |+ 1)/3e ∧ 〈pi, ps〉 ∈ SGM .V x ∀ 〈pi, ps〉 ∈ EchoSetxl

Commitsx := Commitsx ∪ {ps, x, l,m,EchoSetxl }
start timer 〈unstable: ps, x, l〉
while 〈p, cxp + 1,m′,EchoSetxl 〉 ∈ Commitsx do

send up 〈e-mcast: p, x,m′〉
cxp := cxp + 1

Listing 4.8: Echo Multicast Protocol (Continued)

4.6. The Reliable Multicast Protocol

The Reliable Multicast Protocol offers the possibility to send messages to every
member in a group, such that each group member has the assurance that every
other party has received the same message.

It uses the Echo Multicast Protocol and Secure Group Membership Protocol.
In absence of a membership change, a reliable multicast reduces to a single echo
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multicast. But if a party is removed or added to the group, we need a solution for
the messages sent in the old view but not yet stable. The Echo Multicast Protocol
sends and receives messages in a specific view. The Reliable Multicast Protocol gives
us the assurance that all those messages will be stably delivered to the upper layer
and not held forever in the set Commits of the Echo Multicast Protocol.

4.6.1. Informal Description

The protocol uses a variable y, representing the latest view delivered to the higher
protocols. It normally has the same value as the x of the Secure Group Membership
Protocol, except during a membership change, during which it lags behind. The
variable z represents the views for which messages are still accepted. Again, during
membership changes, it lags behind the x of the Secure Group Membership Protocol.
Views with an index lower than z are said closed.

When a message m has to be sent, it is echo multicast in view y. If a message
m is received, we verify if it is intended for an open view (not lower than z) and
then if it is intended for view y. If so, it is immediately delivered to the upper layer,
otherwise, if intended for a future view, it is placed in a sequence and delivered once
the corresponding view is installed.

When a membership change occurs, each party echo multicasts a message 〈end〉
in the old view, telling other parties that it is the last messages it sends in it. After
receiving the same message from every party (except the one that was possibly
removed), the variable z is incremented, so that no more message is accepted for the
closed view and a message 〈flush: Commits〉 is sent in the new view. This message
contains all the entries in the set Commits of the Echo Multicast Protocol. Those
entries are messages of the old view that are not stable yet. Doing so, an agreement
is obtained on the messages belonging to the old view. Once every party sent a
flush message, the index y is incremented and transmitted to the upper layer in a
r-mcast-view message.

In the case where a party does not send a flush or an end message after a given
period of time, it is voted out of the group. If a party is voted out during another
membership change, it is assumed to have sent an end message and an empty flush
message.

4.6.2. Properties

The protocol ensures the following properties [Pet05]:

Integrity For all honest p and m, an honest party sends up 〈r-mcast: p, m〉 in view
x at most the number of times that p sent down 〈r-mcast: m〉 in view x.

Uniform Agreement If q is an honest member of V x+k and an honest p sends up
〈r-mcast: r, m〉 in view x, then q sends up 〈r-mcast: r, m〉 in view x.

Validity-1 If p is an honest member of V x+k for all k ≥ 0, then p sends up 〈r-
mcast-view: x〉.

Validity-2 If p and q are honest members of V x+k for all k ≥ 0 and p sends down
〈r-mcast: m〉 in view x, then q sends up 〈r-mcast: p, m〉 in view x.
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4.6.3. Interface

The following message is received from an upper layer :

〈r-mcast: m〉: to reliably multicast a message m the actual view.

The following messages are sent to one or more upper layer(s):

〈r-mcast: p, m〉: message sent when a reliably multicast message is
received from p.

〈r-mcast-view: x 〉: when a new view with index x is received from
the Secure Group Membership Protocol and all message sent in the
past views were delivered.

4.6.4. Variables

y: the latest view delivered to the higher protocols

z: the views for which messages are still accepted

idx: the index used to identify the messages sent in view x

idxp : the index used to identify thes messages sent by party p in view x

NotReceivedEndx : set of parties who are expected to send an end mes-
sage in view x but have not done it yet

NotReceivedFlushx : set of parties who are expected to send an flush
message in view x but have not done it yet

Deferx : sequence containing messages received for a view x which is
not defined yet
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4.6.5. Pseudocode

Protocol RMP for partypt

Initially (SecureGroupMembershipProtocol):
SGM := SecureGroupMembershipProtocol
EMP := new 〈EMP: SGM 〉
y := SGM .x − 1
z := SGM .x
idy := 0
idyp := 0 for each p ∈ SGM .V [z ]
NotReceivedFlushz := SGM .V [z ]
NotReceivedEnd = Ø
Join()

On message 〈r-mcast: m〉 from an upper layer :
send down 〈e-mcast: SGM.x, 〈r-msg: idSGM .x ,m〉〉
idSGM .x = idSGM .x + 1

On message 〈e-mcast-stable: ps, x
′, 〈r-msg: id ′,m〉〉 from a lower layer :

if z ≤ x′ and idx ′
ps < id ′ then

idx ′
ps := id ′

if x′ = y then
send up 〈r-mcast: ps,m〉

if x′ > y then

Deferx ′
:= Deferx ′

| 〈ps,m〉

On message 〈view: x〉 from a lower layer :
idx := 0
idx

p := 0 for each p ∈ SGM .V x

NotReceivedFlushx := SGM .V x−1 ∩ SGM .V x

if pt /∈ SGM .V x−1 then
Join()

else
NotReceivedEndx−1 := SGM .V x−1 ∩ SGM .V x

for each x′ ∈ {x + 1, ...,SGM .x − 1} do
ReceivedEnd(SGM .V x−1\SGM .V x , x′ − 1)
ReceivedFlush(SGM .V x−1\SGM .V x , x′)

send down 〈e-mcast: x− 1, 〈end〉〉
start timer 〈end: x− 1〉

On timeout 〈end: x′〉:
for each p ∈ NotReceivedEndx ′

do
send down 〈faulty: p, x′ + 1〉

On message 〈e-mcast: ps, x
′, 〈end〉〉 from a lower layer :

ReceivedEnd({ps}, x′)

On timeout 〈flush: x′〉:
for each p ∈ NotReceivedFlushx ′

do
send down 〈faulty: p, x′〉

Listing 4.9: Reliable Multicast Protocol
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On message 〈e-mcast: ps, x
′, 〈flush: Commits〉〉 from a lower layer :

verify ps ∈ NotReceivedFlushx ′

if x′ = 1 or pt ∈ SGM.V x−1 then
for each 〈p, x′ − 1, l,m,Signature〉 ∈ Commits do

EMP.AddToCommit(p, x′ − 1, l,m,Signature)

ReceivedFlush({ps}, x′)

Listing 4.10: Reliable Multicast Protocol (continued)

Protocol RMP (procedures) for party pt

Procedure ReceivedEnd(P, x′):

NotReceivedEndx ′
:= NotReceivedEndx ′

\P
while NotReceivedEnd z = Ø do

stop timer end, z
z := z + 1
send down 〈e-mcast: z, 〈flush: EMP .Commitsz−1 〉〉
start timer 〈flush: z〉

Procedure ReceivedFlush(P, x′):

NotReceivedFlushx ′
:= NotReceivedFlushx ′

\P
while NotReceivedFlushy+1 = Ø do

stop timer 〈flush: y〉
y := y + 1
send down 〈adds: y〉
send up 〈r-mcast-view: y〉
while Defery 6= Ø do
〈p,m〉,Defery := Defery[1],Defery[2..]
send up 〈r-mcast: p,m〉

Procedure Join():
send down 〈e-mcast: y + 1, 〈flush: Ø〉〉
id y = 0 then

start timer〈flush: y + 1〉

Listing 4.11: Reliable Multicast Protocol (Continued)

4.7. The Atomic Multicast Protocol

The Atomic Multicast Protocol adds the property that correct members deliver
messages in the same order. The protocol uses the Reliable Multicast Protocol to
reliably send each message to all members.

4.7.1. Informal Description

This protocol uses the Reliable Multicast Protocol to multicast messages. Once a
message m is received from party p it is added to a sequence Pendingp . A designated
group member, the sequencer , periodically sends an order message, indicating the
order in which the messages are to be delivered. The sequencer , determined by the
function seq(x), keeps a sequence Sendersx, which is a sequence of parties. When
receiving a message 〈order: Senders〉, a party takes the first party p in Senders and
the first message in Pendingsp , and delivers them in a message 〈a-mcast: p, m〉.
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Then, it takes the second party of the sequence and so on. Doing so, each party
delivers all messages in the same order.

If a new view is delivered, the Atomic Multicast Protocol does not wait for an
order message, but deterministically chooses the order in which the queued messages
will be delivered.

4.7.2. Interface

The following message is received from an upper layer:

〈a-mcast: m〉: to atomically multicast a message m.

The following messages are sent to one or more upper layer(s):

〈a-mcast: p,m〉: message sent when an atomically multicast message
m is received from p.

〈a-mcast-view: x 〉: when a new view with index x is received and all
messages sent in the old view are delivered.

4.7.3. Properties

The protocol ensures the following properties [Pet05]:

Integrity For all honest p and m, an honest party sends up 〈a-mcast:
p, m〉 in view x at most the number of times that p sent down
〈a-mcast: m〉 in view x.

Uniform Agreement If q is an honest member of V x+k for all k ≥ 0 and
an honest p sends up 〈a-mcast: r, m〉 in view x, then q sends up
〈a-mcast: r, m〉 in view x.

Validity-1 If p is an honest member of V x+k for all k ≥ 0, then p sends
up 〈a-mcast-view: x〉.

Validity-2 If p and q are honest members of V x+k for all k ≥ 0 and p
sends down 〈a-mcast: m〉 in view x, then q sends up 〈a-mcast: p,
m〉 in view x.

Order If q is an honest member of V x+k for all k ≥ 0 and an honest p
sends up 〈a-mcast: r, m〉 before 〈a-mcast: r′, m′〉 in view x, then
q sends up 〈a-mcast: r, m〉 before 〈a-mcast: r′, m′〉 in view x.

4.7.4. Variables

Sendersx: sequence of parties keeped by the sequencer in view x

Pendingxs : sequence of messages received from ps by each party in view
x

Orderx: sequence of parties used to determine the order in which mes-
sages are delivered
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4.7.5. Pseudocode

Protocol AMP for party pt

Initially (SecureGroupMembershipProtocol):
SGM := SecureGroupMembershipProtocol
RMP := new 〈EMP: SGM 〉

On message 〈a-mcast: m〉 from an upper layer :
send down 〈r-mcast: 〈a-msg: m〉〉

On message 〈r-mcast: ps, 〈a-msg: m〉〉 from a lower layer :
PendingRMP.y

s := PendingRMP.y
s | m

if seq(RMP.y) = pt then
SendersRMP.y := SendersRMP.y | {ps}

start timer 〈sequence: ps,m,RMP .y〉

On timeout 〈sequence: ps,m, x〉
if x = SGM .x then

send down 〈faulty: seq(x ), x〉

Periodically:
if seq(RMP .y) = pt then

send down 〈r-mcast: 〈order: SendersRMP.y〉〉
SendersRMP.y = Ø

On message 〈r-mcast: Seq(RMP.y), 〈order: Senders〉〉 from a lower layer :
while Senders 6= Ø do

pi,Senders := Senders[1 ],Senders[2 ..]
if pi ∈ SGM .V [RMP .y ] then

OrderRMP.y := OrderRMP.y | pi

while OrderRMP.y 6= Ø and PendingRMP.y
OrderRMP.y [1] 6= Ø do

ps,OrderRMP.y := OrderRMP.y [1],OrderRMP.y [2..]
m,PendingRMP.y

ps := PendingRMP.y
ps [1 ],PendingRMP.y

ps [2 ..]
send up 〈a-mcast: ps,m〉
stop timer 〈sequence: ps,m,RMP.y〉

On message 〈r-mcast-view: x〉 from a lower layer :
for each p ∈ deterministically ordered SGM.V [x− 1] do

while Pendingp 6= Ø do
m,Pendingp := Pendingp [1 ],Pendingp [2 ..]
send up 〈a-mcast: p,m〉
stop timer 〈sequence: p,m, x− 1〉

send up 〈a-mcast-view: x〉

Listing 4.12: Atomic Multicast Protocol
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4.8. The Synchronized Atomic Multicast Protocol

Members that have been offline for a moment or that just joined the group need to
synchronize their messages. This protocol is responsible to do it so that all honest
parties eventually receive the same messages in the same order. If a member has
always been online, this protocol reduces to an Atomic Multicast Protocol and saving
messages in a sequence.

4.8.1. Informal Description

A party p that did not receive messages because it was voted out of the group or
because it just joined it needs to synchronize. The party goes into the joining mode.
It starts by multicasting a message 〈request-hashes: b〉, where b is the amount of
messages it already received. In answer, the other parties respond with a message
〈reply-hash: e, h〉 containing the amount of messages they possess and a hash
on the messages missing at p. Since the messages are received in the same order
by correct parties, party p eventually receives at least b(|V | − 1)/3c + 1 identical
hashes. Party p stores this hash in a variable hash. It then randomly selects a
party from which it requests the missing messages by sending a message 〈request-
messages: b, e〉. An honest party responds by sending a message 〈reply-messages:
Messages[b+1, e]〉. Once received, a new hash is created with the received messages
and compared with the variable hash. If the party does not answer or if the messages
are not correct, another party is selected at random, until p obtains correct messages.

While waiting for the messages, p saves any message received from the Atomic
Multicast Protocol in a sequence Save. Once the missing messages are obtained and
delivered, the messages in Save are also delivered.

4.8.2. Interface

The following message is received from an upper layer:

〈s-mcast: m〉: to atomically multicast a synchronizable message m.

The following messages are sent to one or more upper layer(s):

〈s-mcast: p,m〉: sent when a synchronizable atomically multicast mes-
sage m is received from p.

〈s-mcast-view: x 〉: sent when a new view with index x is received and
all messages sent in the old view are delivered.

4.8.3. Properties

The protocol ensures the following properties [Pet05]:

Integrity For all honest p and m, an honest party sends up 〈s-mcast:
p, m〉 in view x at most the number of times that p sent down
〈s-mcast: m〉 in view x.

Uniform Agreement If q is an honest member of V x+k for all k ≥ k′ for
a k′ and an honest p sends up 〈s-mcast: r, m〉 in view x, then q
sends up 〈s-mcast: r, m〉 in view x.
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Validity-1 If p is an honest member of V x+k for all k ≥ k′, then p sends
up 〈s-mcast-view: x〉.

Validity-2 If p and q are honest members of V x+k for all k ≥ k′ and p
sends down 〈s-mcast: m〉 in view x, then q sends up 〈s-mcast: p,
m〉 in view x.

Order If q is an honest member of V x+k for all k ≥ k′ for a k′ and an
honest p sends up 〈s-mcast: r, m〉 before 〈s-mcast: r′, m′〉 in
view x, then q sends up 〈s-mcast: r, m〉 before 〈s-mcast: r′, m′〉
in view x.

4.8.4. Variables

Messages: sequence of messages delivered to the upper layer

Hashes: collection of reply-hash messages

hash: hash of the missing messages at pt

end : the number of messages already received by pt

member : true if party pt is member of the actual view

joining : true if pt just joined the group and needs to synchronize

Save: sequence of new messages received when pt is synchronizing

NotReceivedHash : set of parties who did not send a reply-hash mes-
sage yet

4.8.5. Pseudocode

Protocol SAMP for party pt

Initially (SecureGroupMembershipProtocol):
SGM := SecureGroupMembershipProtocol
AMP := new 〈AMP: SGM 〉
Messages := Ø
member := pt ∈ SGM.V (SGM.x)
joining := false
hash := NIL
end := NIL

On message 〈s-mcast: m〉 from an upper layer :
send down 〈a-mcast: 〈s-msg: m〉〉

On message 〈a-mcast: ps, 〈s-msg: m〉〉 from a lower layer :
if joining then

Save := Save | 〈ps,m〉
else

send up 〈s-mcast: ps,m〉
Messages := Messages | 〈ps,m〉

Listing 4.13: Synchronized Atomic Multicast Protocol
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On message 〈a-mcast-view: x〉 from a lower layer :
if pt /∈ SGM .V (x ) and member then

member := false

if pt ∈ SGM.V (x) and ¬member then
member := true
joining := true
Save := Ø
hashses := Ø
hash := Ø
NotReceivedHash := SGM .V (x )
stop timer 〈messages〉
send down 〈a-mcast: 〈request-hashes: |Messages|〉〉

On message 〈a-mcast: ps, 〈request-hashes: b〉〉 from a lower layer :
if ¬joining then

send 〈reply-hash: |Messages|,hash on Messages[b + 1, |Messages|]〉 to ps

On message 〈reply-hash: e, h〉 from ps:
if joining ∧ ps ∈ NotReceivedHash then

NotReceivedHash := NotReceivedHash\ps
Hashes := Hashes ∪ 〈e, h〉
if 〈end , hash〉 occurs b(|SGM.V (SGM.x)| − 1)/3 + 1c times in Hashes then

randomly select a p
send 〈request-messages: |Messages|, end〉 to p
start timer 〈Messages〉

On message 〈request-messages: b, e〉 from ps:
if |Messages| ≥ e then

send 〈reply-messages: Messages[b + 1, e]〉 to ps

On message 〈reply-messages: M〉 from ps:
stop timer 〈Messages〉
if hash = hash on M and |M | = end − |Messages| then

while M 6= Ø do
〈ps,m〉,M := M [1],M [2..]
Messages := Messages | 〈ps,m〉
send up 〈s-mcast: ps,m〉

while Save 6= Ø do
〈ps,m〉,Save := Save[1],Save[2..]
Messages := Messages | 〈ps,m〉
send up 〈s-mcast: ps,m〉

joining := false
else

randomly select another p
send 〈request-messages: |Messages|, end〉 to p
start timer 〈messages〉

On timeout 〈messages〉
randomly select another p
send 〈request-messages: |Messages|, end〉 to p
start timer 〈messages〉

Listing 4.14: Synchronized Atomic Multicast Protocol (continued)
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4.9. The Board Protocol

This section describes three protocols. The first one is the Consolidation Protocol.
It receives messages from clients, broadcasts them to the other parties, persists them
and returns a receipt to the client. It is also responsible for answering to read re-
quests. The second one is the Write Protocol, used by clients to post messages and
the third one, the Read Protocol is used by clients to read the content of the board.

Only authorized users should be able to post messages. It can be achieved using
signatures but this is outside the scope of this paper. Clients are therefore assumed
to be authorized to post and read.

4.9.1. Informal Description

When a party p receives a message m from a client c, it multicasts it to the members
of the view. Upon receiving the multicast message, each party adds it in a sequence
Messages and sends a signature on m to p. Party p then combines the signatures
and presents them to the client c as a proof that m has been posted. It is the receipt.
If the client does not receive it in time, it selects another party and try to post his
message again.

When a client c wants to read messages, it contacts one of the parties, which will
request a signature on the messages to the other parties. At the end, it sends the
messages and the signatures to the reader.

Note that those protocols can differ depending on the context. For example, in
an e-voting context, the number of votes casted may want to be restricted, servers
must be closed for writing after a certain date, etc.

4.9.2. Properties

The protocol ensures the following properties:

Availability Every authorized client c is allowed to post messages on the
board and everybody is allowed to read the content of the board.

Failure Detection Every time a client c sends a message m to party p, it
receives a receipt and is able to prove it if the content of the board
has changed.

Variables

Messages: sequence of messages delivered by the Synchronized Atomic
Multicast Protocol

Signaturescm : set of signatures received from the other parties when a
message m sent by a client c has been delivered

Readc : set of signatures received from the other parties after a read
request for client c

36



Pseudocode

Protocol CP for party pt

Initially (SecureGroupMembershipProtocol):
SGM := SecureGroupMembershipProtocol
Messages := Ø
Signatures := Ø
Read := Ø

On message 〈message: m〉 from c:
verify that c is authorized to post and that m is valid
send down 〈s-mcast: 〈msg: c,m〉〉

On message 〈s-mcast: ps, 〈msg: c,m〉〉 from a lower layer :
verify that c is authorized to post and that m is valid
Messages := Messages|〈c,m〉
send 〈signature: c,m, 〈c,m〉Kt〉 to ps

On message 〈signature: c,m, signature〉 from ps:
Signaturesc

m := Signaturesc
m ∪ {〈ps, signature〉}

if |Signaturesc
m | = b(n− 1)/3c+ 1 then

send 〈signature: m,Signaturesc
m〉 to c

On message 〈read〉 from c:
Readc = Ø
for each p ∈ SGM .V [SGM .x ] do

send 〈request-read: |Messages|, c〉 to p
start timer 〈read: |Messages|, c〉

On timeout 〈read: e, c〉
for each p ∈ SGM .V [SGM .x ]\Readc

send 〈request-read: e, c〉 to p
start timer 〈remove-read: c〉

On timeout 〈remove-read: c〉
for each p ∈ SGM .V [SGM .x ]\Readc

send down 〈faulty: p〉

On message 〈request-read: e, c〉 from ps:
send 〈reply-read: e, c, 〈Messages[1, e]〉Kt〉 to ps

On message 〈reply-read: e, c, s〉 from ps:
Readc := Readc ∪ {〈ps, s〉}
if |Readc| = b(n− 1)/3c+ 1 then

send 〈messages: Messages[1, e], Readc〉 to c
stop timer 〈read: e, c〉
stop timer 〈remove-read: c〉

Listing 4.15: Consolidation Protocol
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Protocol WP for client c

Initially (m):
randomly select a party p
send 〈message: m〉 to p
start timer 〈message: m〉

On timeout 〈message: m〉
randomly select another party p
send 〈message: m〉 to p
start timer 〈message: m〉

On message 〈signature: m,Signature〉 from ps:
stop timer 〈message: m〉
if |Signatures| = b(n− 1)/3c+ 1 then

randomly select another party p
send 〈message: m〉 to p
start timer 〈message: m〉

Listing 4.16: Write Protocol

Protocol RP for client c

Initially ():
randomly select a party p
send 〈read〉 to p
start timer 〈read〉

On timeout 〈read: m〉
randomly select another party p
send 〈read〉 to p
start timer 〈read〉

On message 〈messages: Messages,Signature〉 from ps:
stop timer 〈read〉
if |Signatures| = b(n− 1)/3c+ 1 then

randomly select another party p
send 〈read〉 to p
start timer 〈read〉

Listing 4.17: Read Protocol
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5. Implementation

In this chapter, we present the way we implemented the protocols described in
Chapter 4.

5.1. Language and Libraries

We chose to implement our protocols in Java. The following libraries were used:

JavaSE-1.6: The following description has been found on www.oracle.com:

Java Platform, Standard Edition (Java SE) lets you develop and de-
ploy Java applications on desktops and servers, as well as in today’s
demanding embedded environments. Java offers the rich user inter-
face, performance, versatility, portability, and security that todays
applications require. Visit www.oracle.com/javase for more details.

Spring-2.5.6: the different components of our solution are initialized and
configured using the Spring framework. The administrator config-
ures the board (e.g., timer delays, queue sizes, ...) using an XML
file. Visit www.springsource.org for more details.

Log4j-1.2.16: Log4j is the utility we chose to log relevant events. The
administrator is able to configure what to do with the different logs
using an XML file. Visit logging.apache.org/log4j for more details.

JUnit-4.8.2: we did lots of test using this unit testing framework. Visit
www.junit.org for more details.

5.2. Layered Architecture

As presented in Figure 5.1, our application has a relaxed layered architecture1.
In opposition to a strict layered architecture, where a layer n is only allowed to
communicate with the layer n+ 1 and n− 1, the layers communicate here with any
other layer.

1http://msdn.microsoft.com/en-us/library/ff648623.aspx
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Synchronized Multicast Protocol

Atomic Multicast Protocol

Reliable Multicast Protocol

Echo Multicast Protocol

Secure Group Membership Protocol

Network

Application

uses service of

Figure 5.1.: Relaxed layered architecture

5.3. Layer Description

In this section, we focus on a layer n and give details about its components and
interfaces.

Layer n

Layer n+1

Layer n-1
getDownQueue() addMessageListener 

(MessageListener, Set<Class>)

Queue

take

getDownQueue() addMessageListener 
(MessageListener, Set<Class>)

Figure 5.2.: Example of a layer n

As presented in Figure 5.2, each layer possesses the following components:

- one or more queues containing messages to be processed

- an interface used by upper layers to put messages into the queue
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- an interface where upper layers can register to receive messages from
this layer

- an Activity (more details in Section 5.7) that takes messages from the
queue and processes them

Note that a layer possibly contains more than one queue. However, we here present
a solution where each layer contains only one queue from which an Activity takes
and processes messages. Sending messages to lower layers is done by the Activity,
which uses the method getDownQueue() of the target layer to put messages into its
queue. Reception of messages from lower layers is achieved using the method ad-
dMessageListener. See Section 5.5 for details about the inter-layer communication.

Every layer runs a protocol, which is initializable and controllable. More details
about the initalization and configuration are provided in Section 5.10.

The Initializable interface contains the following methods:

- init(): variables requiring information from the other layers (e.g., the
index of the view) are initialized here.

- postInit(): it is the last initialization step. The other layers and parties
are possibly required.

The Controllable interface contains the following methods:

- start(): starts the protocol. This is done once the protocol has been
initialized.

- terminate(): terminates the protocol definitely.

- hold(): holds the protocol. It can be resumed later.

- resume(): resumes an held protocol.

- reset(): resets the protocol to its initial state so that it can be started.

Moreover, we choose to use JMX2 to interact with the layers. Every protocol
implements an MBean interface, containing the methods that will be invoked later
using a JMX client.

5.3.1. Packages

In order to avoid cyclic dependencies, each protocol is separated in two packages:
the service package, containing the interfaces visible to the other protocols and the
protocol package, containing the implementation of the protocol.
Additionally, the package common contains the classes common to all protocols.
Figure 5.3 shows the dependency graph of a layer n and its lower and upper layers.
As you can see, a protocol only knows its own service and eventually the services of
the lower layers.

2http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
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Service n+1 Protocol n+1

Protocol nService n

Protocol n-1Service n-1

Common

Figure 5.3.: Dependency graph of a layer n

5.3.2. Class Diagram

The class diagram in Figure 5.4 contains the main components present int every
layer. Those components are described later in this thesis.

ConcreteService

+ AbstractProtocol
listeners : Map<MessageListener, Set<Class> >
#notifyMessageListener(Message)
+addMessageListener(MessageListener, Set<Class>)

+AbstractProtocolSingleQueue
queue : BlockingQueue
downStream : DownStream

ConcreteProtocol
doWork()

+ Activity
-worker : Thread
#enqueue(OutputQueue, Message)
#doWork()

ConcreteProtocolMBean

«interface»
+ Controllable
+start()
+terminate()
+hold()
+resume()
+reset()

«interface»
+ Initializable

+init()
+postInit()

Figure 5.4.: Main components of a protocol
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5.4. Messages

The communication between layers is achieved via the exchange of messages. And
the communication between peer protocols is also achieved via the exchange of
messages (via the service provided by one or more lower layers).

Message and ComposedMessage

The interface Message is the super interface of all messages. As presented in Figure
5.5, messages possibly contain other messages. Those are named ComposedMessages.

«interface»
+ Message

+getByteArray() : byte[]

+ ConcreteComposedMessage
...
#getConcreteByteArray() : byte[]
...

+ ComposedMessage
-message: Message
+getByteArray() : byte[]
#getConcreteByteArray() : byte[]

+ ConcreteMessage
...
+ getByteArray() : byte[]
...

Figure 5.5.: Messages and ComposedMessage

Figures 5.6 and 5.7 represent the data and headers which are added and removed
by the different layers.

msg

r-mcast a-mcast s-mcast msg

a-mcast s-mcast msg

s-mcast msg

e-mcast r-mcast a-mcast s-mcast msgx

Figure 5.6.: Message sent down

Signatures

When signing a message (see also Section 5.9.2), the content of the signature is
given by the method getByteArray(). ComposedMessages also use a method get-
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psmsg

pss-mcast msg

psa-mcast s-mcast msg

psr-mcast a-mcast s-mcast msg

pse-mcast r-mcast a-mcast s-mcast msgx

Figure 5.7.: Message sent up

ConcreteByteArray() to deal with the content of the containing and the contained
message.

Additionally to the relevant data (e.g., a party), signatures contain the type of
the message and the index of the view. These are unique identifiers, necessary to
avoid the use of a signature for a different purpose.

5.4.1. Using Collections

We have to be very careful when using collections in the messages. Always keep in
mind that the content of the messages will possibly be signed, sent to another party,
reconstructed and then verified. If non-sorted collections (e.g., HashMap or HashSet
in Java) are used, the order of their items will possibly not be the same after their
reconstruction. Thus, the verification of the message’s signature will fail. In order
to avoid this problem, use ordered collections or make sure the items have the same
order during the creation of a signature and its verification.

The variable ps (the sender) has to be part of the message. It is verified during
the reception of the message. If the ps contained in the message is different than
the ps obtained using the SSLContext, the message is discarded.

5.5. Communication Between the Layers

The communication between the layers, denoted send up and send down in the
protocols of Chapter 4 is vertical, in opposition to the communication between
parties, which is horizontal.

5.5.1. Down-Going Messages

The down-going communication is realized using streams. A layer sending a mes-
sage down to another one uses the method enqueue(OutputQueue, Message) of its
Activity. As you can see in Figure 5.8, the interface DownStream is an extension
of OutputQueue. We thus can send a message to a lower protocol using its down
stream interface. Moreover, using the method enqueue of Activity, the message is
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put into the lower protocol’s queue in a manner ensuring that it will not be lost if
the queue is full or if the protocol is held.

«interface»
+ Downstream

+ ConcreteProtocol
-queue : BlockingQueue
getDownstream() : Downstream

- DownstreamImpl
+ put(Message)

put(m){
    queue.put(m);
}

«interface»
+ OutputQueue

+put(Message)

Figure 5.8.: Downstream implementation

In Listing 5.1, an upper layer sends a faulty message m down to the Secure Group
Membership Protocol.

// Get the OutputQueue of the Secure Group Membership Protocol:
OutputQueue queue = sgms.getDownstream();
// Create a FaultyMessage:
Message m = new FaultyMessage(pi, x);
enqueue(queue, message);

Listing 5.1: Send a message to a lower layer (send down)

5.5.2. Up-Going Messages

As presented in Figure 5.9, the up-going communication is realized using listeners
(the observer pattern). Every layer can subscribe to receive messages from any
lower layer by providing a messages filter set. The filter set determines the types of
messages for which it wants to receive a notification.

+ AbstractProtocol
-listeners : Map<MessageListener, Set<Class»
#notifyMessageListeners(Message)
+addMessageListener(MessageListener, Set<Class>)
+removeMessageListener(MessageListener)

+ ConcreteProtocol
...
...

«interface»
+ MessageListener

onMessage(MessageEvent)
1 0..*

contains

Figure 5.9.: Realization of the observer pattern
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In the following listing, an upper layer registers to listen to the view messages
coming from the Secure Group Membership Protocol.

Set<Class> filterSet = new HashSet<Class>();
filterSet.add(ViewMessage.class);
sgms.addMessageListener(this, filterSet);

Listing 5.2: Listen to the messages of a lower layer

Listing 5.3 represents the algorithm used to notify the listeners when a message
is to be sent.

// In class AbstractProtocol
/∗∗
∗ Notify all registered listeners having a corresponding message type in
∗ their filter set.
∗
∗ @param m the message to be delivered to the listeners
∗ @throws InterruptedException thrown if worker thread really needs to terminate
∗/

protected void notifyMessageListeners(UpMessage m)
throws InterruptedException {

MessageEvent e = new MessageEvent(this, m);
for (MessageListener l : this.listeners.keySet()) {

for (Class c : this.listeners.get(l)) {
if (c.isInstance(m.getMessage())) {

l.onMessage(e);
break;

}
}

}
}

Listing 5.3: Transmissition of a message to a higher layer (send up)

When a message comes from a lower layer (see Listing 5.3), it is put into the
addressee’s queue and processed later by the Activity. This is represented in Figure
5.10.

5.6. Communication Between the Parties

The horizontal communication (between parties) uses the Network Protocol, respon-
sible for sending and receiving messages to or from other parties.

The Network Protocol

For each party, two links are established: one for sending messages to that particular
party and a link end point for receiving messages from it. The link layer manages the
links and the link end points. If a link cannot be established, it periodically retries
to establish it with the help of an activator. If it succeeds then the link is considered
to be up. Links and link end points are tore down whenever the network protocol is
put in hold, and are set up again again upon resuming the network protocol. Links
and link end points are also tore down whenever the network protocol is terminated.
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«interface»
+ MessageListener

+onMessage(MessageEvent)

+ MessageListenerImpl
-outputQueue : OutputQueue
+onMessage(MessageEvent)

Message m = messageEvent.getMessage();
enqueue(outputQueue, m);

+ ConcreteProtocol
...
...

  1

  1

Figure 5.10.: Implementation of a message listener

Network Topology

In order to have direct communication between the parties, we use a fully connected
network. This leads to a quadratically growing number of connections: n2−n, where
n is the number of parties in the group.

Secure Sockets Layer

We use SSL (Secure Sockets Layer) connections to provide authenticity, confiden-
tiality and integrity.

Each party uses a SSLServerSocket, accepting connections from the other parties
and possess a keystore, containing its own private key and a truststore, containing
the certificates of parties authorized to send messages.

5.7. Activity and Multi-Threading

Our application is multi-threaded. Each layer possesses its own Activity, which
basically is just a worker thread taking messages from a queue and processing them.

In Figure 5.11 you can see the sequence diagram of an Activity taking a message
from a queue and processing it. Notice that the queue is in fact a blocking queue.
Thus, when the thread of the protocol n wants to take a message from the empty
queue, it is blocked until the queue is able to return a message. Similarly, a protocol
which puts a message in a full queue will be blocked until there is a free space for
the message. We thus can assure that a message will not be lost if a queue is full.

Every protocol must implement a method doWork() (abstract in the class Activ-
ity), which is used by the worker thread to do the actual work of an Activity. Indeed,
the action to perform when a message is taken from the queue differs depending on
the protocol and the type of message. This method contains a list of instanceof, used
to determine the type of the message and call the corresponding process method.
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Protocol n+1 Queue n Protocol n

put message

take message

message

take message

Protocol n is blocked 
while the queue is empty

Figure 5.11.: Sequence diagram of an Activity taking a message from a queue

Note that those process methods are public for test purpose but would be private
in a production environment.

Additionally, we added the possibility to start, stop, hold and resume an Activity.
A layer whose Activity is held, will stop processing messages until its Activity is
resumed. Although being useless in production settings of the bulleting board, this
is an interesting feature for demonstration purposes. For example, queues can be
filled to analyze the subsequent behavior of the protocol.

However, holding a running protocol must be done carefully. Indeed, if a protocol
would be held in the middle of a procedure, a part of a procedure could not be
executed or a message could be lost. Our strategy to solve this problem is to let the
worker thread finish what it was doing and then, hold it. However, if it is waiting
on a queue, the thread is directly held.

The following three different states are used in an Activity:

- the ActivityState: describing if the Activity is initialized, running,
held, was correctly terminated or if it was forced to terminate for
any reason.

- the WorkerState: describing if a worker exists, is running, is blocked on
a input/output queue, has correctly terminated or if it was forced
to terminate for any reason.

- the Java Thread’s state: the thread running in the worker thread. See
the Java API3 for more details.

An Activity also contains instances of timers (periodic or one shot) in order to hold
them with the worker thread. Details about the timers are provided in Section 5.8.

5.8. Timers

A distinction is made between two types of timers: one shot timers, occurring just
once and periodic timers, occurring an infinite amount of times.

3http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html
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Timers are created by the concrete protocol but started and stored by the Activity.
This is because when holding an Activity, we also want the timers to be held.
However, so that a concrete protocol can cancel the timers, it keeps a reference
to them. After a cancellation, the reference is removed from the protocol and the
instance from the Activity.

When a timeout occurs, a message corresponding to the timer is put in the pro-
tocol’s queue. The Activity’s worker thread will then process it. Doing so, the
exceptions (typically InterruptedException in Java) are safely managed by the Ac-
tivity. Note that timer messages have a name finishing by ”TimerMessage”.

5.8.1. One Shot Timers

One shot timers are typically used when a message is expected from another party.
If the party does not send the message in time, a procedure is started in order to
vote the party out of the group.

The realization of the remove-unstable timer, presented in Listing 4.7, is done as
follow:

Callable<Void> task = new Callable<Void>() {
@Override
public Void call() throws InterruptedException {

Message rutm = new RemoveUnstableTimerMessage(p, x, l);
enqueueTimeoutMessage(getTimerOutputQueue(), rutm);
return null;

}};
ScheduledFuture<?> f = schedule(task, TIMER DELAY, TimeUnit.MILLISECONDS);
removeUnstableTimers.add(new RemoveUnstableTimer(p, x, l, f));

Listing 5.4: Creation of a one shot timer

public void processRemoveUnstableTimerMessage(RemoveUnstableTimerMessage rum)
throws InterruptedException {

int x = rum.getX();
Party p = rum.getP();
int l = rum.getL();
for (Party pi : sgms.getParties(x)) {

if (l > cp.get(pi).get(p).get(x)) {
enqueue(sgms.getDownstream(), sgmmf.createFaultyMessage(pi, x));

}
}
stopRemoveUnstableTimer(p, x, l);

}

Listing 5.5: Process the message created in the one shot timer above

In Listing 5.4 the timer is created, passed to the Activity using the method sched-
ule and a reference is kept in the map removeUnstableTimers. If a timeout occurs, a
RemoveUnstableTimerMessage is put into the queue and processed by the Activity
as described in Listing 5.5. Otherwise, the timer is canceled and removed by the
protocol.

5.8.2. Periodic Timers

Periodic timers are used when an action has to be performed periodically. It is the
case for the CountersMessages described in Section 4.6.
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The realization of a periodic timer is done as follow:

Runnable command = new Runnable() {
@Override
public void run() {

// Put a MulticastMessage in the queue:
Message em = new MulticastMessage(x, new CountersMessage(x, counters, party));
enqueueTimeoutMessage(getMyOutputQueue(), em);

}
};
periodically(command, INITIAL DELAY, PERIODIC TIMER DELAY,

TimeUnit.MILLISECONDS);

Listing 5.6: Creation of a periodic timer

In Listing 5.6, the periodic timer is created and passed to the Activity using the
method periodically. For now on, a MulticastMessage will be periodically added to
the queue and processed by Activity worker thread.

5.9. Keys and Algorithms

In this section, we present the algorithms and key lengths we use. Those have been
chosen following the recommendations from NIST4. With the choices we made, our
system is supposed to be secure until 2030.

5.9.1. Hash Functions

As presented in Listing 5.7, we use the SHA-256 hash function.

MessageDigest md = MessageDigest.getInstance(”SHA−256”);
md.update(b, 0, b.length);
byte[] sha256hash = md.digest();

Listing 5.7: Hash function

5.9.2. Digital Signatures

RSA signatures are used in the protocols. The exact algorithm is SHA256withRSA
found in java.security.Signature. The following listing shows how do we generate
signatures with the help of class SignatureServiceImpl.

byte[] toSign = ...;
Signature sig = Signature.getInstance(”SHA256withRSA”);
sig.initSign(privateKey, new SecureRandom());
sig.update(toSign);
byte[] signature = sig.sign();

Listing 5.8: Signature algorithm

The verification of a signature is done similarly, using sig.initVerify(...) and
sig.verify(...) insteads of sig.initSign(...) andsig.sign(...).

4www.nist.gov
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5.9.3. Keys

Each party possesses two key pairs. One to sign messages in the protocol and one
for the SSL communication. Both are RSA keys of 2048 bits.

5.9.4. Ordering Parties

Parties have to be deterministically ordered, so that the same manager (see Section
4.4) or sequencer (see Section 4.7) can be designated at each party. Additionnally, in
the Atomic Multicast Protocol, messages may have to be deterministically delivered.
This is done using the rank of the parties: all messages coming from the party with
rank 1 are delivered, then those from party with rank 2, and so on until party with
rank n.

Parties are ordered on their public keys. The method String.compareTo(String) is
used to compare two public keys. Doing so, we have the assurance that two parties
will never have the same rank (they can not have the same key) and that the order
will be the same at every party.

5.10. Configuration and Initialization

5.10.1. Configuration files

The following configuration files are needed at each party:

application-context.xml: used by Spring when the application is started,
it contains configuration variables and the path to the other config-
uration files. For more details, visit www.springsource.org.

parties-descriptor.xml: describes the parties forming the first view.

sbb-keystore.jks: contains the private key used by pt to sign messages.

sbb-truststore.jks: contains the public keys of every party in the group.

ssl-keystore.jks: contains the private key used by this party for the SSL
communication.

ssl-truststore.jks: contains the public keys of the parties allowed to com-
municate using SSL.

5.10.2. Spring

The protocol instances (beans) are create by Spring, using the application-context.xml
file. This file contains information to create the beans and configure instance vari-
ables (e.g., file paths, interfaces of other protocols, services, etc.).
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5.10.3. First View

The first view is installed by an administrator at each party. It is described in the
parties-descriptor.xml file. An example is given in Listing 5.9, where the first view
is composed of three parties and this party is party1.

<?xml version=”1.0” encoding=”UTF−8”?>
<description>

<myAlias>party1</myAlias>
<parties>

<party alias=”party1”>
<address>

<ipAddress>127.0.0.1</ipAddress>
<port>9001</port>

</address>
</party>
<party alias=”party2”>

<address>
<ipAddress>127.0.0.1</ipAddress>
<port>9002</port>

</address>
</party>
<party alias=”party3”>

<address>
<ipAddress>127.0.0.1</ipAddress>
<port>9003</port>

</address>
</party>

</parties>
</description>

Listing 5.9: Parties forming the first view

5.10.4. Init and Start

Once the protocol instances are created, they have to be initialized. During this
phase, they get information from the other protocols (e.g., the index of the view).
This is done using the method init(), which corresponds to the statement Initially
in the pseudocode of Section 4.

We then have to start the protocols (start the Activity’s worker thread) and to
do their post initialization, during which the network is used to communicate with
the other parties (e.g., method join() of the Reliable Multicast Protocol). This is
done in the same method: start().

The protocols are now ready to work. Note that the two methods init() and
start() can be executed using JMX client.

5.10.5. Template Method Pattern

Because the protocols are different, they possibly have to execute different opera-
tions during the start phase. However, the method start(), represented in Listing
5.10, is implemented in the class Activity, which is the same for every protocol. We
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therefore use the template method pattern as represented in Listing 5.10: first, the
method preStart() is called, then the worker thread is initialized and started and fi-
nally, the method postStart() is called. Both preStart() and postStart() are abstract
methods, where operations specific to a concrete protocol are executed.

preStart();
setActivityState(ActivityState.RUNNING);
this.t = new Worker();
this.t.start();
postStart();

Listing 5.10: Implementation of the method start()

Similarly, the template method pattern is used in the method work() of the worker
thread, so that tasks specific to concrete protocols can be executed by the worker
thread before and after it does its work. Typically, the join() procedure of the
Reliable Multicast Protocol is executed here. This ensures that exceptions (e.g., full
queue) are correctly handled by the Activity.

5.10.6. Initialization Sequence

Here is a summary of the order and the thread who executes the operations during
the initialization phase:

constructors: external thread initialization of the beans
setters: external thread the setters are called to configure the beans
init(): external thread variables requiring other layers are initialized

preStart(): specific to each protocol
t.start(): external thread the worker thread is initialized and started

postStart(): specific to each protocol

preWork(): post initialization is done using the network
doWork(): worker thread the worker thread processes the messages in the queue

postWork(): specific to each protocol
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6. Conclusion and Future Work

In this master thesis, we saw that a bulletin board can be used in different contexts
to allow users to post messages that will never be removed, modified or moved.
Moreover, it must always be available, it possesses no single point of failure and the
user is able to prove it if all those properties are not respected.

We also presented a distributed solution running at n parties, of whom less than
one third can be corrupt without affecting the correctness of the bulletin board.
The user randomly chooses a party, posts his message and receives a receipt for it.
This solution, based on the master thesis of R.A. Peters [Pet05], uses the secure
broadcast channel described in [Rei94].

Unfortunately, Peters’ document is hard to understand and contains errors. A
part of the work was to correct them and make this solution easier to understand.
Another major difference is that our prototype is multi-threaded. It makes us gain
performance and gives us more possibilities to test the system but thread-safe pro-
tocols are hard to realize.

Currently, the six lowest protocols (Network, Secure Group Membership, Echo
Multicast, Reliable Multicast, Atomic Multicast and Synchronized Multicast) have
been implemented and tested. The application layer, described in Section 4.9 re-
mains to be done. However, we realized an simple application (see Appendix A)
that gives us the ability run our protocols and to monitor and manage them using
a JMX client.

Future work will add group-threshold signatures in the Echo Multicast Protocol,
making it more efficient. It will be important to use a scheme not requiring a trusted
dealer. Otherwise, a single point of failure will exist.

Additionally, alternative message formats (ASN.1, XML, JSON, etc.) will be used
in order to make our bulletin board ready for interoperability with possible other
implementations.

A persistence service will also be needed, allowing the board to be stopped and
restarted with the same state.

As written earlier, the application layer has to be implemented with a graphical
user interface and functionalities. Those functionalities will depend on specific re-
quirements that also are to be defined.

Finally, hash chains, described by J. Heather and D. Lunding [HL09] will be used,
giving even more trust in the system. This is to do in the application layer.
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A. Simple Application

Insteads of the protocols described in Section 4.9, we implemented a simpler appli-
cation. Using it, we can test our solution, starting seven parties in different virtual
machines (see Figure A.1).

Figure A.1.: The applications running at seven parties

Using JConsole1 (see Figure A.2) as JMX client we can monitor and manage it.
The application initializes the protocoles, starts their worker threads and give the
possibility to send one or more messages in a command line interface. The received
messages are the printed out.

Figure A.2.: The JMX client

1http://en.wikipedia.org/wiki/JConsole
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