Append-only Bulletin Board

Severin Hauser
PhD Workshop, Tarragona, April 25th, 2016
Content

- Introduction
- Past Work
- Current Work
- Summary and Outlook
Introduction
Work Overview

- Defining operations and wording
- Implementation
- UniVote2
- Understanding the problems behind append-only
- What are the trust assumptions
- Who to improve these assumptions
Vocabulary

- Properties - A Board can have some properties e.g. interlinked
- Message - Is posted to the bulletin board
- Attribute - Is added to a posted message to ensure a board property
- Post - A post represents the message and all its attributes
Append-only

- No posted message \(m \) can be deleted
- No posted message \(m \) can be altered
- \(\mathcal{P}(t) \subseteq \mathcal{P}(t+1) \)
Properties

- Prevent board flooding
- Give the user a receipt
- Create a hash chain over all messages.
- etc.
Past Work
Post

- Either the author or the board can add an attribute to m
 - list of author attributes α
 - list of board attributes β
- The post $p = (m, \alpha, \beta)$ is stored in \mathcal{P}
- For the author to gain full knowledge of the post, β must be returned.

\[
\text{Post}(m, \alpha) : \beta
\]
Limit the result R by introducing query $Q \subseteq \mathcal{M} \times \mathcal{A} \times \mathcal{B}$

$R = \{(m, \alpha, \beta) \in \mathcal{P} : (m, \alpha, \beta) \in Q\} \subseteq \mathcal{P}$

The board can add result attributes γ to R

\[
\text{Get}(Q) : R, \gamma
\]
Properties

- Post properties
 - Adds an attribute to either α or β

- Get properties
 - Adds an attribute to γ
 - is added by the bulletin board

- Further properties
 - Adds additional operations to the board. Does not require attributes
Current Work
Trust assumptions

- The board does not delete published messages $\mathcal{P}\langle t \rangle \subseteq \mathcal{P}\langle t+1 \rangle$
- The board delivers always the complete set \mathcal{P} on request.
- The board adds every valid message m to \mathcal{P}.
 \[
 \text{valid}(m, \alpha) = true \rightarrow p \in \mathcal{P}
 \]
Robust PBB

- Assumption: At least t out of n are honest.
- If the post and get operations involve all n all other assumptions are true
- Has performance limits with some properties
Interlinked (hash-chain)

- Does not replace the assumptions but provides a degree of detection for misbehaviour
- This is true for the single and robust variant
- It's enough to detect a conflict
Interlinked cont.
Probability of conflicting hash values
\[1 - (2 \times \sum_{x} \text{depth}(x)/n \times (n - 1)) \]

Branches with size 1

As late as possible
Interlinked cont.
Interlinked cont.

- Works best if views of \(\mathcal{P} \) don’t get shared
- View can be represented by the hash value of the last node
- Either use broadcast channels (multiple)
- For a single board something like an auditor-network might make sense
Auditor-network

- A network of n auditors with at least t honest
- The board need to send them every hash entry
- Elevates the assumptions for deletion and full view to t out of n as long as every operation is validated with the auditor-network
Summary and Outlook
Outlook

- Further work on the part around assumptions and interlinked
- Find differences in the broadcast channels (BitCoin, Twitter, GitHub)
- Is there a "robust" way for accepting valid messages without the board being robust?
Questions?

http://e-voting.bfh.ch

severin.hauser@bfh.ch
Sectioned

- Allows to separate unrelated messages into different sections
 - e.g. the data of various elections
- User attribute $s \in S$ must be provided
Grouped

- Messages are organized into groups
- Messages in the same group are usually similar
- User attribute $g \in \mathcal{G}$ must be provided
- \mathcal{G} is the same for every section s.
Typed

- Depends on Grouped
- Defines for g_i the set of correct messages $\mathcal{M}_i \subseteq \mathcal{M}$
- Does not add an attribute
Certified Posting

- With this property every user receives after a successful post a receipt from the board.
- Board attribute \(S_p = \text{Sign}_{sk_{BB}}(m, \alpha, \beta_I) \) is added by the bulletin board where:
 - \(sk_{BB} \) is the secret key of the bulletin board.
 - \(\beta_I \) is the sublist of all board attributes before \(S_p \).
Certified Reading

- This is a get property
- With this property the bulletin board commits to every result \(R \)
- Result attribute \(S_Q = \text{Sign}_{sk_{BB}}(Q, R, \gamma) \) is added by the bulletin board
 - \(\gamma \) is the sublist of \(\gamma \) added before \(S_Q \)
Notifying

- This property belongs to further properties
- It allows an entity e to register for a Query Q on the bulletin board
- If a post full fills Q, e is notified.
- This property results in the following two operations:
 - Register$(e, Q) : c$
 Where Q represents the query for the messages the entity is interested in and c a return code, which can be used to unregister.
 - Unregister$(c) : -$
 By providing his/her return code c, one can unregister and will not receive any further notification.