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Introduction 

• The verification of a vote encryption is needed to: 

– Guarantee that a valid vote is encrypted. 
• Important for both mix-net and homomorphic tallying. 

 

– Guarantee that the voter’s choice is encrypted correctly. 
• Important for cast-as-intended and end-to-end verifiability. 

 

• A complex ballot is one that has a large number of 
valid vote possibilities. 



Complex ballot example 1 
Darmstadt, Germany 

 



Complex ballot example 2 
Australia 

 



Related work 

This work Groth 2005  Helios 

P V P V P V 

Approval 
K-out-of-N 

2N [+ 3N] 4N [+ 5N] 6K + 4 3K + 3 6N + 2 8N + 4 

(0-N)-out-of-N 4N [+ 3N] 8N [+ 5N] 2N + 4 N + 3 6N 8N 

(Kmin-Kmax)-out-
of-N 

2(N + Kmax-Kmin) 
[+ 3N] 

4(N + Kmax-Kmin) 
[+ 5N] 
 

- - 6N +  
4(Kmax-Kmin) – 2 

8N +  
4(Kmax-Kmin) 

Weighted 
(divisible) 
Vote = T shares 

2TN [+3N] 4TN [+5N] 10N + 4 * 5N + 2 * (4T-2)(N+1) 4T(N+1) 

Rank K-out-of-N 2N  
[+2KN +3N]  

4N 
[+4KN +5N] 

4N + 2 ** 2N + 3 ** 6(N+1)K + 2K 8(N+1)K + 4K 

    *  Does not support a limit per candidate. 
  **  Ranks all candidates and limits the homomorphic tally to the Borba method. 



Related work – continuation I 

• Groth 2005 

– Complexity grows exponentially with the number of candidates and the number 
of votes allowed in the homomorphic tally.  

 

– Large number of candidates => large exponents size 

• Exponent size ~ log2 (#votes) * # candidates    

 

– Requires a crypto system with an easy decryption of  

     E(m1+m2, r1+r2) = E(m1, r1)E(m2, r2), e.g. Paillier. 

• Size of decryption table for 256 bits EC-ElGamal 

         10 candidates, 100 votes  ->  more than 25TB!!!  

 

In practice, does not work for complex elections. 

 



Related work – continuation II 

• Helios 

– Direct mix-net tallying is expensive because it involves one ciphertext per each 
possible option (candidate). 

 

– The number of ciphertexts can be reduced by using more expensive proofs. 

 

– No mix-net solution for ranked candidates. 

 

– Larger proofs. 



A NEW WAY TO VERIFY AN 
ENCRYPTION OF A COMPLEX VOTE 



Key idea 

1. Create a verifiable shuffle of a set of candidate identifiers. 
– Bayer and Groth 2012  

 

2. Create the vote encryption directly from the shuffle output. 

 

3. Add ZKPK to check ballot structure constrains. 



Approval voting 

Candidate 
Identifiers 

Verifiable  
Shuffle 

Shuffle of the 
encrypted 
candidate 
identifiers  

Vote 

 
A 
B 
C 
D 

 
B 
D 
C 
A 

 
 
 
 

B 

D 

C 

A 



Approval voting 

Candidate 
Identifiers 

Verifiable  
Shuffle 

Shuffle of the 
encrypted 
candidate 
identifiers  

Vote 

 
A 
B 
C 
D 

 
B 
D 
C 
A 

 
 
 
 

B 

D 

C 

A 

B 



Approval voting [Kmin , Kmax]  
Example : [2-3]  
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Approval voting with homomorphic tally 
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Ranked voting with homomorphic tally 

Candidate 
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Homomorphic counters from N shuffles 
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Ranked voting with homomorphic tally 
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Ranked voting with homomorphic tally 
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A SINGLE VERIFICATION CODE FOR 
A COMPLEX BALLOT 



Preliminaries 

• Consider: 

– The usual ElGamal setup. 

– One independent generator (gi) for every choice/candidate i. 

– Let 𝑉 = 𝐸( 𝑔𝑗𝑙
𝑘
𝑙=1 , 𝑟𝑣)   be the homomorphic product of 

the k ciphertexts that compose the vote. 

 

 



The voter verification protocol (v1) 
Vote Machine Voter 

S = {s1,…,sk} 

𝑉 = 𝐸( 𝑔𝑠𝑙
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𝑅
 ℤ𝑞 
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𝒍=𝟏   𝝈, 𝑉,𝑊 

BB 

𝑉,𝑊 
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𝑷𝒓!? 
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UNIVERSAL A VERIFICATION CODE 



The voter verification protocol (v2) 
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Thank you! 

Questions? 


