
Verifying complex ballots with a single
(constant size) verification code

Rui Joaquim
rui.joaquim@uni.lu

e-Voting PhD days, 14-15 November 2013, Muenchenwiler

mailto:Rui.joaquim@uni.lu

Introduction

• The verification of a vote encryption is needed to:

– Guarantee that a valid vote is encrypted.
• Important for both mix-net and homomorphic tallying.

– Guarantee that the voter’s choice is encrypted correctly.
• Important for cast-as-intended and end-to-end verifiability.

• A complex ballot is one that has a large number of
valid vote possibilities.

Complex ballot example 1
Darmstadt, Germany

Complex ballot example 2
Australia

Related work

This work Groth 2005 Helios

P V P V P V

Approval
K-out-of-N

2N [+ 3N] 4N [+ 5N] 6K + 4 3K + 3 6N + 2 8N + 4

(0-N)-out-of-N 4N [+ 3N] 8N [+ 5N] 2N + 4 N + 3 6N 8N

(Kmin-Kmax)-out-
of-N

2(N + Kmax-Kmin)
[+ 3N]

4(N + Kmax-Kmin)
[+ 5N]

- - 6N +
4(Kmax-Kmin) – 2

8N +
4(Kmax-Kmin)

Weighted
(divisible)
Vote = T shares

2TN [+3N] 4TN [+5N] 10N + 4 * 5N + 2 * (4T-2)(N+1) 4T(N+1)

Rank K-out-of-N 2N
[+2KN +3N]

4N
[+4KN +5N]

4N + 2 ** 2N + 3 ** 6(N+1)K + 2K 8(N+1)K + 4K

 * Does not support a limit per candidate.
 ** Ranks all candidates and limits the homomorphic tally to the Borba method.

Related work – continuation I

• Groth 2005

– Complexity grows exponentially with the number of candidates and the number
of votes allowed in the homomorphic tally.

– Large number of candidates => large exponents size

• Exponent size ~ log2 (#votes) * # candidates

– Requires a crypto system with an easy decryption of

 E(m1+m2, r1+r2) = E(m1, r1)E(m2, r2), e.g. Paillier.

• Size of decryption table for 256 bits EC-ElGamal

 10 candidates, 100 votes -> more than 25TB!!!

In practice, does not work for complex elections.

Related work – continuation II

• Helios

– Direct mix-net tallying is expensive because it involves one ciphertext per each
possible option (candidate).

– The number of ciphertexts can be reduced by using more expensive proofs.

– No mix-net solution for ranked candidates.

– Larger proofs.

A NEW WAY TO VERIFY AN
ENCRYPTION OF A COMPLEX VOTE

Key idea

1. Create a verifiable shuffle of a set of candidate identifiers.
– Bayer and Groth 2012

2. Create the vote encryption directly from the shuffle output.

3. Add ZKPK to check ballot structure constrains.

Approval voting

Candidate
Identifiers

Verifiable
Shuffle

Shuffle of the
encrypted
candidate
identifiers

Vote

A
B
C
D

B
D
C
A

B

D

C

A

Approval voting

Candidate
Identifiers

Verifiable
Shuffle

Shuffle of the
encrypted
candidate
identifiers

Vote

A
B
C
D

B
D
C
A

B

D

C

A

B

Approval voting [Kmin , Kmax]
Example : [2-3]

Candidate
Identifiers

Verifiable
Shuffle

Shuffle of the
encrypted
candidate
identifiers

Vote

A
B
C
D
1

B
D
C
A

B

1

D

A

C
Add

Kmax – Kmin

1’s

Approval voting [Kmin , Kmax]
Example : [2-3]

Candidate
Identifiers

Verifiable
Shuffle

Shuffle of the
encrypted
candidate
identifiers

Vote

A
B
C
D
1

B
D
C
A

B

1

D

A

B

C

1

A Add
Kmax – Kmin

1’s

Choose
Kmax

encryptions

Approval voting with homomorphic tally

Candidate
Identifiers

Verifiable
Shuffle

Shuffle of the
encrypted
candidate
identifiers

Homomorphic
counters

Vote

A
B
C
D
1

HA

HB

HC

HD

B

1

D

A

C

Approval voting with homomorphic tally

Candidate
Identifiers

Verifiable
Shuffle

Shuffle of the
encrypted
candidate
identifiers

Homomorphic
counters

Vote

A
B
C
D
1

HA

HB

HC

HD

B

1

D

A

C

A

1

C

D

ZKPK

Approval voting with homomorphic tally

Candidate
Identifiers

Verifiable
Shuffle

Shuffle of the
encrypted
candidate
identifiers

Homomorphic
counters

Vote

A
B
C
D
1

HA

HB

HC

HD

B

1

D

A

B

C

A

1

C

D

ZKPK

Ranked voting with homomorphic tally

Candidate
Identifiers

Homomorphic counters from N shuffles

A

HA1

HA2

HA3

HA4

B HB1 HB2 HB3 HB4

C HC1 HC2 HC3 HC4

D HD1 HD2 HD3 HD4

1

B

D

1

C

B

D

A

1

B

1

A

C

1

D

A

C

Ranked voting with homomorphic tally

Candidate
Identifiers

Homomorphic counters from N shuffles

A

HA1

HA2

HA3

HA4

B HB1 HB2 HB3 HB4

C HC1 HC2 HC3 HC4

D HD1 HD2 HD3 HD4

1

B

A

D

1

C

B

C

D

A

1

B

D

1

A

C

1

B

D

A

C

vote

Ranked voting with homomorphic tally

Candidate
Identifiers

Homomorphic counters from N shuffles Check sum

A

HA1

HA2

HA3

HA4

B HB1 HB2 HB3 HB4

C HC1 HC2 HC3 HC4

D HD1 HD2 HD3 HD4

1

B

A

D

1

C

B

C

D

A

1

B

D

1

A

C

1

B

D

A

C ZKPK

B

D

A

C

vote

A SINGLE VERIFICATION CODE FOR
A COMPLEX BALLOT

Preliminaries

• Consider:

– The usual ElGamal setup.

– One independent generator (gi) for every choice/candidate i.

– Let 𝑉 = 𝐸(𝑔𝑗𝑙
𝑘
𝑙=1 , 𝑟𝑣) be the homomorphic product of

the k ciphertexts that compose the vote.

The voter verification protocol (v1)
Vote Machine Voter

S = {s1,…,sk}

𝑉 = 𝐸(𝑔𝑠𝑙
𝑘
𝑙=1 , 𝑟𝑣)

𝑊 = 𝐸(𝑔𝑖
𝑤𝑖𝑁

𝑖=1 , 𝑟)

𝑤1, … , 𝑤𝑁, 𝑟
𝑅
 ℤ𝑞

𝝈 = 𝒈𝒍
𝒘𝒌𝒌

𝒍=𝟏 𝝈, 𝑉,𝑊

BB

𝑉,𝑊

The voter verification protocol (v1)
Vote Machine Voter

S = {s1,…,sk}

𝑉 = 𝐸(𝑔𝑠𝑙
𝑘
𝑙=1 , 𝑟𝑣)

𝑊 = 𝐸(𝑔𝑖
𝑤𝑖𝑁

𝑖=1 , 𝑟)

𝑤1, … , 𝑤𝑁, 𝑟
𝑅
 ℤ𝑞

𝝈 = 𝒈𝒍
𝒘𝒌𝒌

𝒍=𝟏 𝝈, 𝑉,𝑊

c 𝒄
𝑹
 ℤ

BB

𝑉,𝑊

The voter verification protocol (v1)
Vote Machine Voter

S = {s1,…,sk}

𝑉 = 𝐸(𝑔𝑠𝑙
𝑘
𝑙=1 , 𝑟𝑣)

𝑊 = 𝐸(𝑔𝑖
𝑤𝑖𝑁

𝑖=1 , 𝑟)

𝑤1, … , 𝑤𝑁, 𝑟
𝑅
 ℤ𝑞

𝝈 = 𝒈𝒍
𝒘𝒌𝒌

𝒍=𝟏 𝝈, 𝑉,𝑊

c 𝒄
𝑹
 ℤ

∀𝑠𝑖 ∈ 𝑆: 𝑟𝑠𝑖 = 𝑤𝑠𝑖 + 𝑐

∀𝑙 ∉ 𝑆: 𝑟𝑙 = 𝑤𝑙

𝑃𝑟 = 𝑍𝐾𝑃𝐾[𝑊⨂𝑉
𝑐 = 𝐸(𝑔𝑖

𝑟𝑖

𝑁

𝑖=1

, 𝑟′)]

BB

𝑉,𝑊

𝑟1, … , 𝑟𝑛, 𝑃𝑟 𝑐, 𝑟1, … , 𝑟𝑛, 𝑃𝑟

𝝈 ?= 𝒈𝒔𝒊
𝒓𝒔𝒊−𝒄

𝒔𝒊 ∈ 𝑺

𝑷𝒓!?

The voter verification protocol (v1)
Vote Machine Voter

S = {s1,…,sk}

𝑉 = 𝐸(𝑔𝑠𝑙
𝑘
𝑙=1 , 𝑟𝑣)

𝑊 = 𝐸(𝑔𝑖
𝑤𝑖𝑁

𝑖=1 , 𝑟)

𝑤1, … , 𝑤𝑁, 𝑟
𝑅
 ℤ𝑞

𝝈 = 𝒈𝒍
𝒘𝒌𝒌

𝒍=𝟏 𝝈, 𝑉,𝑊

c 𝒄
𝑹
 ℤ

∀𝑠𝑖 ∈ 𝑆: 𝑟𝑠𝑖 = 𝑤𝑠𝑖 + 𝑐

∀𝑙 ∉ 𝑆: 𝑟𝑙 = 𝑤𝑙

𝑃𝑟 = 𝑍𝐾𝑃𝐾[𝑊⨂𝑉
𝑐 = 𝐸(𝑔𝑖

𝑟𝑖

𝑁

𝑖=1

, 𝑟′)]

BB

𝑉,𝑊

𝑟1, … , 𝑟𝑛, 𝑃𝑟 𝑐, 𝑟1, … , 𝑟𝑛, 𝑃𝑟

𝝈 ?= 𝒈𝒔𝒊
𝒓𝒔𝒊−𝒄

𝒔𝒊 ∈ 𝑺

𝑷𝒓!?

The voter verification protocol (v1)
Vote Machine Voter

S = {s1,…,sk}

𝑉 = 𝐸(𝑔𝑠𝑙
𝑘
𝑙=1 , 𝑟𝑣)

𝑊 = 𝐸(𝑔𝑖
𝑤𝑖𝑁

𝑖=1 , 𝑟)

𝑤1, … , 𝑤𝑁, 𝑟
𝑅
 ℤ𝑞

𝝈 = 𝒈𝒍
𝒘𝒌𝒌

𝒍=𝟏 𝝈, 𝑉,𝑊

c 𝒄
𝑹
 ℤ

∀𝑠𝑖 ∈ 𝑆: 𝑟𝑠𝑖 = 𝑤𝑠𝑖 + 𝑐

∀𝑙 ∉ 𝑆: 𝑟𝑙 = 𝑤𝑙

𝑃𝑟 = 𝑍𝐾𝑃𝐾[𝑊⨂𝑉
𝑐 = 𝐸(𝑔𝑖

𝑟𝑖

𝑁

𝑖=1

, 𝑟′)]

BB

𝑉,𝑊

𝑟1, … , 𝑟𝑛, 𝑃𝑟 𝑐, 𝑟1, … , 𝑟𝑛, 𝑃𝑟

𝝈 ?= 𝒈𝒔𝒊
𝒓𝒔𝒊−𝒄

𝒔𝒊 ∈ 𝑺

𝑷𝒓!?

UNIVERSAL A VERIFICATION CODE

The voter verification protocol (v2)
Vote Machine Voter

S = {s1,…,sk}

𝑉 = 𝐸(𝑣, 𝑟𝑣)

𝑊 = 𝐸(𝝈, 𝑟)

𝝈
𝑅
 𝐺𝑞 , 𝑟

𝑅
 ℤ𝑞

𝝈, 𝑉,𝑊

BB

𝑉,𝑊

The voter verification protocol (v2)
Vote Machine Voter

S = {s1,…,sk}

𝑉 = 𝐸(𝑣, 𝑟𝑣)

𝑊 = 𝐸(𝝈, 𝑟)

𝝈
𝑅
 𝐺𝑞 , 𝑟

𝑅
 ℤ𝑞

𝝈, 𝑉,𝑊

c 𝒄
𝑹
 ℤ

BB

𝑉,𝑊

The voter verification protocol (v2)
Vote Machine Voter

S = {s1,…,sk}

𝑉 = 𝐸(𝑣, 𝑟𝑣)

𝑊 = 𝐸(𝝈, 𝑟)

𝝈
𝑅
 𝐺𝑞 , 𝑟

𝑅
 ℤ𝑞

𝝈, 𝑉,𝑊

c 𝒄
𝑹
 ℤ

𝑃𝑟 = 𝑍𝐾𝑃𝐾[𝑊⨂𝑉
𝑐 = 𝐸(𝜽, 𝑟′)]

BB

𝑉,𝑊

𝜽, 𝑃𝑟 𝜽, 𝑐, 𝑃𝑟

𝝈 ?= 𝜽/𝒗𝒄 𝑷𝒓!?

The voter verification protocol (v2)
Vote Machine Voter

S = {s1,…,sk}

𝑉 = 𝐸(𝑣, 𝑟𝑣)

𝑊 = 𝐸(𝝈, 𝑟)

𝝈
𝑅
 𝐺𝑞 , 𝑟

𝑅
 ℤ𝑞

𝝈, 𝑉,𝑊

c 𝒄
𝑹
 ℤ

𝑃𝑟 = 𝑍𝐾𝑃𝐾[𝑊⨂𝑉
𝑐 = 𝐸(𝜽, 𝑟′)]

BB

𝑉,𝑊

𝜽, 𝑃𝑟 𝜽, 𝑐, 𝑃𝑟

𝝈 ?= 𝜽/𝒗𝒄 𝑷𝒓!?

The voter verification protocol (v2)
Vote Machine Voter

S = {s1,…,sk}

𝑉 = 𝐸(𝑣, 𝑟𝑣)

𝑊 = 𝐸(𝝈, 𝑟)

𝝈
𝑅
 𝐺𝑞 , 𝑟

𝑅
 ℤ𝑞

𝝈, 𝑉,𝑊

c 𝒄
𝑹
 ℤ

𝑃𝑟 = 𝑍𝐾𝑃𝐾[𝑊⨂𝑉
𝑐 = 𝐸(𝜽, 𝑟′)]

BB

𝑉,𝑊

𝜽, 𝑃𝑟 𝜽, 𝑐, 𝑃𝑟

𝝈 ?= 𝜽/𝒗𝒄 𝑷𝒓!?

The voter verification protocol (v2)
Vote Machine Voter

S = {s1,…,sk}

𝑉 = 𝐸(𝑣, 𝑟𝑣)

𝑊 = 𝐸(𝝈, 𝑟)

𝝈
𝑅
 𝐺𝑞 , 𝑟

𝑅
 ℤ𝑞

𝝈, 𝑉,𝑊

c 𝒄
𝑹
 ℤ

𝑃𝑟 = 𝑍𝐾𝑃𝐾[𝑊⨂𝑉
𝑐 = 𝐸(𝜽, 𝑟′)]

BB

𝑉,𝑊

𝜽, 𝑃𝑟 𝜽, 𝑐, 𝑃𝑟

𝝈 ?= 𝜽/𝒗𝒄 𝑷𝒓!?

Thank you!

Questions?

