@ OBJECTIF SECURITE

Implementing a verifiable voting protocol:
First lessons learned from a proof of
concept

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Context

o Security requirements regarding 2"Y generation e-voting
systems in Switzerland have been defined

o They include
— individual verification,
— universal verification

— A cryptographic protocol to achieve these goals

0 One such protocol has been described as an example by the
sub-working group (UAG) that worked on the requirements

o Providers of 2"d generation e-voting systems will have to
implement such a protocol.

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

The project

o The goal of our project is to implement the example
protocol in order to gain insights in issues and
challenges that can arise.

o Today’s presentation is about the first issues and
challenges we identified so far.

o This project is work done for the Canton of Geneva

10/28/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Agenda

o Specifics about the Technical Regulations

o Brief description of the protocol

0 Interesting issues

28/10/2013

Crypto librairies

Performance

Representation of codes

Information needed by the server

Redundancy

OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

A word of caution

o This protocol was given as an example to illustrate
security requirements

— There is no claim that it is correct or compliant
o Our implementation is only partial

— Mixnets not implemented (more standard)

o This is not a presentation about a perfect protocol or
an evoting product

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Specifics about Swiss
electronic vote

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Verifiability

o The goal of verifiability is to be able to give irrefutable
proofs

o Even if we have proofs, we need to trust some
elements to make falsifying proofs very hard

o The Technical Regulations (TR) define 2 new levels of
security and a trust model for each one.

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Security levels

o Individual verifiability:
— Can be used by 50% of voters of a canton.
— Voter must be able to detect if vote was not registered as intended.
— The printer and the voting server are trusted.

— (dedicated voting devices are trusted)

o Universal verifiability
— Can be used by 100% of voters.
— Additionally it must be possible to detect if the result is not correct.
— The printer and one out of n components of the server are trusted.

— (dedicated voting devices are trusted)

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Individual verifiability

o For example the voter compares

— A code received by the voting server (trusted)

— A code printed on a code list by the printer (trusted) and transmitted by
the post (trusted)

o According to the TR, chances must be smaller than 1/1000 that
a fake code is not recognized by the voter.

o The goal is to detect any manipulations by the voter’s platform
or a man-in-the-middle.

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Universal verifiability

o Proof that the result corresponds to all received
ballots

o Can be direct, as in bulletin boards
— Difficult to achieve while preventing vote buying

o Can be indirect: verification is delegated to auditors
who can access the proofs

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

28/10/2013

The protocol

OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

11

Concepts

o Based on homomorphic encryption, El Gamal
o Return codes are generated for individual verifiability

o Zero knowledge proofs

— Proof of no alteration during mixing, proof of correct calculation of
return code, proof of attribution of a vote to a vote card.

o Distributed keys , =

— Nobody knows the complete private key

o Control components store and manipulate the private key E

o Verifiable reencrypting mixnets | X || X

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Control components

o Protect their part of the private key(s). Create a
signed log of all operations done with the key.

o Execute very simple mathematical operations with the
keys.

o Itis the only element that needs to be secure in the
VE system.

o Only one of the control components needs to be
honest to detect any manipulation of the result or any
violation of confidentiality.

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Phases of the protocol

a) Preparation: generation of the keys, of the voting card
and the code lists

b)Vote: encryption of the vote, calculation of the return
code, storing in the ballot box

c) Counting: mixing the ballots, decrypting the ballots.

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

b) vote 1/4

evoting system
authentication

> server box

Encrypted ballot, ZKP

£ || »

o The voter authenticates: voting card number n, code list id, other elements

o Choses a candidate(s). Sends encrypted candidate code plus ZKP proving
knowledge of vote and link to card number n.

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

b) vote 2/4

e ae i
o e Evoting system
Verification code server box
y <
\Dz/

o The server lets the components blind and then decrypt the
vote. ZKPs are generated for both operations.

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

b) vote 3/4

Evoting system

confirmation cpmde server box

£ || »

o Voter verifies the verification code and sends
confirmation code.

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

b) vote 4/4

Evoting system
Finalisation code server box
>
encrypted.
ballot

o If the confirmation code is correct, the system drops
the vote in the box and the control components
generate the finalisation code.

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

a) preparation

Evoting system

server box

anonymous codes

Initialisation system

verif. codes, card nbrs

>
confirmation codes
finalisation codes

o Control components generate private key listes de codes

o They generate verification codes encrypted for the printer

o They generate and mix verification codes for the evoting system.

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

c) counting

counting system

MiX MmiX decrypt

box X X - server » results

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

28/10/2013

Findings

OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

21

Crypto libraries

o We do ElIGamal encryption

o Existing libraries
— Java: BouncyCastle, Cryptix, FlexiProvider, Qilin, Verificatum
— C++: libgcrypt, Botan, Crypto++
— Python: Pycrypto, eyPyCrypto, Pysecret, Viff
— Javascript: Forge, SICL

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Crypto libraries

o We do ElGamal encryption
— But we cut the key in pieces and do only partial encryption/decryption
— We want to know or to set the randomness r

o We do standard ZKP (knowledge of log, equality of log)

— But sometimes we add a card number into the hash

— And sometimes we want to prove the inverse of the log instead of the
equality!

o No standard library does exactly that

— Except for Unicrypt !

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Crypto libraries

o There are only few operation needed

o Easy to implement them using any standard crypto
library

— We had to define 22 primitives
e.g generate_privkey, generate_pubkey, zkp, validate zkp,
reencrypt, blind, hash, sign, ...

0 Current HSMs on the market do not have these
primitives

— There are programmable HSMs with crypto libraries

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Crypto libraries

o If parts of the systems are implemented in different
languages, it is important to define the conversion of
data types

o E.g for the ZKP of the vote we need to

— introduce the card number into a hash

— Use the result of the hash as a number

o We need to define a language independent way of
doing it (long_to_bytes, bytes to_long)

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Crypto libraries

o QOur choices

Support des grands nombres java.math.BigInteger inclus Forge (jsbn)
PRNG java.security.SecureRandom pycrypto Forge

Test nombre premier BouncyCastle pycrypto -

Modexp inclus inclus Forge
Hachage SHA-1 java.security.MessageDigest pycrypto Forge
Signature DSA BouncyCastle pycrypto -

28/10/2013

OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Performance

0 98% of the time is spent doing modular exponentiation
(modexp)

o Typical speed for 2048 bit modexp on one CPU core (Corie i7
L620)

— Java 30/s
— Python 25/s
— Javascript (Chrome V8 engine) 5/s

o Java and Python use fast C code to perform them.
Implementing the protocol in C should not improve much the
speed.

o (HSM, 2010: 1000 DSA sigs with p=2048 and q=224)

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Performance: example

o 250’000 voters

o 1 control component (parallel operation of all
components)

0 600 candidate codes (300 candidates because
cumulation, plus codes for lists and for blanks)

o 125’000 received ballots with 100 votes each

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Performance server-side

o Operations

— Setup 3 billion modexp
— Receiving the ballots: 300 million modexp

— Counting: 100 million modexp

o0 To be able to do the setup in one day we would need
1300 CPU cores...

o Cost of mixing has not yet been modeled

— Could be very expensive at setup time

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Performance client-side

o 5 modexp per vote (2 for encryption, 3 for ZKP).

— About one second

o If the voter selects 100 candidates we need one
second at each selection (ok)

o If the voter selects complete list we could use a single
code for the list

o If he selects a list and then removes one candidate...

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Possible optimizations

o Change parameters

— Use a smaller q for G, in Z,
— g of size 256 bits is enough to protect against brute-force

— Eight times faster than g of size 2048 bits.

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Possible optimizations

0 Use a limited number of code lists
— Using 10’000 different lists rather than 250’000 reduces setup time by a factor

of 25
— The attacker needs to know at least 10 lists to have one chance in 1’000 to have

the correct code
If the control components know which list has been given with which vote
card there is no need to print the id on the list

(0

— The voter does not need to type the list id when voting
— The attacker can not now which list is in the hand of the voter
— Using 1’000 lists should be sufficient (gain is 250)
o Alternatively have 250’000 different list ids but only 1’000 different lists

OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

28/10/2013

Possible optimizations

o Let the printer do the anonymization of the codes

— Instead of recalculating and mixing them for anonymization, let the
printer decrypt the codes, sort them, and send them back

— reduces work by factor 2.5

o Together we could potentially have a gain of 500 - 5000

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Representation of codes

o The verification codes are calculated as the blinded
candidate code

— The voter encrypts the candidate code

— The control components blind the code with the exponent
that corresponds to the code list

— The control components then decrypt and return the
blinded code

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Representation of codes

o The blinded verification code is 2048 bits long!
0 We need P < 1/1000 chance for the attacker

— Three digits or two alphanumerical characters could be
enough

o If we truncate the code, chances are that two
candidates have the same code

— Technically this is not a problem, P is still 1/1000

— Voters will not accept to have the same code for two
candidates

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Representation of codes

o In the example protocol we sort the blinded candidate
codes and return the position of the code in the
sorted list of the code

o Elegant, the codes run from 1..r

o If there is less than 1000 codes, then P is too large

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Representation

o For elections of parliaments
— We need two codes per candidate (for cumulation)
— We need one code per list
— We need one code per empty line on the lists

— With 500 candidates we can reach 1000 codes

o0 For referendums or small elections

— We could truncate the blinded candidate codes to 4 digits
and reject lists that contain collisions

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Information shared with the server

o The server helps
— Authenticating the user
— Verifying the verification code
— Receiving the confirmation code

— Returning the confirmation code

o The codes are short (e.g. not 128 bits, bruteforceable)

o We must be careful that the server does not learn enough to
impersonate a voter or the server.

o At some point the control components probably need to have a
way to make a decision among themselves

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

Redundancy

o Critical on-line services often run in two redundant locations.

o Control components hold one part of a private key
— This could be solved by using threshold crypto systems
o They also generate proofs and logs
— These should be replicated to avoid loss

o They also hold state (e.g. who has voted)

— This information can also be held by the (untrusted) server

— Manipulations by the server would be detected afterwards by
consulting the logs

28/10/2013 OS Objectif Sécurité SA, Gland, www.objectif-securite.ch

