Transparency and Technical Measures to Establish Trust in Norwegian Internet Voting

Oliver Spycher and Melanie Volkamer

E-Voting Conference, 11-09-2011
Outline

- Background
- Measures for trust establishment
- Analysis of the Norwegian system
- Own contributions
Outline

● Background
● Measures for trust establishment
● Analysis of the Norwegian system
● Own contributions
Background

● Oliver Spycher
 ○ Researcher in electronic voting
 ○ PhD student at BFH and University of Fribourg
 ○ Member of the Swiss eVoting Competence Center

● Melanie Volkamer
 ○ PhD "Evaluation of Electronic Voting` 2008
 ○ Senior researcher TU Darmstadt since 2008
 ○ Author of two Common Criteria PP for eVoting
 ○ OSCE mission to Estonia, 2007
 ○ Several presentations at CoE conferences
Background

● Paper: Measures to Establish Trust in Internet Voting
 ○ ICEGOV 2011
 ○ Norwegian, Estonian, Polyas and Helios System

● Paper: Transparency and Technical Measures to Establish Trust in Norwegian Internet Voting
 ○ VoteID 2011
 ○ Application to the Norwegian system in detail

● Mandate: k-resilience term for the Norwegian system
Outline

- Background
- Measures for trust establishment
- Analysis of the Norwegian system
- Own contributions
General Statement

Ensuring high security standards are a necessary condition for gaining trust (in electronic voting) that lasts and that is justified but high security standards are alone not sufficient for voters accepting a system and the result of the election.

Define measures for trust establishment
Different Groups

⚠ need to be convinced namely
 ○ Experts
 ○ Average voters
Experts

- Are independent / not part of the project team
- Understand security and cryptography
- Want to have access to detailed information to
 - Analyse security
 - Understand remaining risks
- Communicate with press
Average Voters

- Want to be included in discussions/decisions
- Want to understand the
 - Functionality of the system
 - Basic security features
 - Remaining risks
- Believe in independent experts
- Can be influenced by bad press
- Want to test the system
- Want to have a usable and accessible system
- Want to get support when necessary
Measures

- Two types of measures
 - Security related ones
- To convince experts and average voters
- Non or only indirectly security related ones
- Mainly for average voters
Security Related Ones

<table>
<thead>
<tr>
<th>Transparency (Documents)</th>
<th>Security Evaluation (international standards)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addressing organiz. environment by sound concept</td>
<td></td>
</tr>
<tr>
<td>Addressing secure authentication by smart cards</td>
<td></td>
</tr>
<tr>
<td>Addressing uncontrolled environ. by vote updating</td>
<td></td>
</tr>
<tr>
<td>Addressing SPP by trusted devices/codes</td>
<td></td>
</tr>
<tr>
<td>Addressing secrecy by separation of duty</td>
<td></td>
</tr>
<tr>
<td>Addressing integrity by E2E verifiability</td>
<td></td>
</tr>
</tbody>
</table>

Remember: high **security** standards are a **necessary** condition for gaining **trust**
Transparency

- Requirements document
- Voting protocol
- Technical documentation
- Source code
- Description of key management
- Evaluation documents and reports
- Abstract system description for average voters
Non-Security Ones

- Open discussion
- Transparency
 - Tender, project plan, budget
 - Involved parties and their roles/duties
 - Platform to raise questions
- Usability / accessibility
- Test election
Pitfalls

- Some measures come along with pitfalls
 - In general: budget and time
 - Verifiability: complexity / usability
 - Decision for or against implementing the measures depends on society, law, type of election
Outline

● Background
● Measures for trust establishment
● Analysis of the Norwegian system
● Own contributions
Security Related Ones

- Addressing organiz. environment by sound concept
- Addressing secure authentication by smart cards
- Addressing uncontrolled environ. by vote updating
- Addressing SPP by trusted devices/codes
- Addressing secrecy by separation of duty
- Addressing integrity by E2E verifiability

Transparency (Documents)

Security Evaluation (international standards)
Security Related Ones (1)

- Transparency
 - Many documents online
 - First-hand info from E-valg and manufacturer
- Integrity/E2E verifiability
 - [cast as intended] Malicious software on the voter's PC cannot manipulate if mobile phone works correctly
 - [recorded as cast] Need to trust at least 1 of 2
 - [tallied as recorded] Need to trust at least 1 of x
 - [only eligible voters] Need to trust 1 of 4 + x (BUT!)
Security Related Ones (2)

- Secrecy / Separation of Duty
 - 1 could violate (AuthS)
 - 2 (VCS and RCG)
 - Election board cannot
 - 6 or 1 (6 * EB / DCS) with 1 (RCG / VCS / CS / AS)

- Secure Platform Problem
 - Malicious PC could still violate secrecy

- Uncontrolled environment
 - Vote-updating is implemented
Security Related Ones (3)

- Secure authentication
 - Only MinID available
- Organizational environment
 - Data Centers have ISMSs based on 27001
- Security evaluation
 - Planned if decided to apply internet voting more broadly
 - Common Criteria Security Targets available
Non-Security Ones

- Open discussion
 - Forum
 - With time
- Usability / accessibility
 - During election
- Test election
 - With pre-system (without SMS)
Outline

● Background
● Measures for trust establishment
● Analysis of the Norwegian system
● Own contributions
Own Contribution (1)

Problem: Voter receives SMS and success message on PC but vote is not counted if VCS deletes it

Solution:
- RCG stores in addition encrypted votes signed by voters
- CS takes votes into account which are either stored by RCG or VCS

☐ If voter receives SMS and success message on PC then his vote will be counted if at least 1 of 2 is trusted
Own Contribution (2)

For each voter VCS holds a secret value to pre-compute the SMS return codes. \(v^s\)

Problem: If RCG had known just 1 such value, it could have broken the secrecy of all voters. \(s=K^{ID}\)

Solution:
- If RCG knows just 1 such value, it can only break the secrecy of that particular voter. \(s = AES_K(ID))\)
Own Contribution (3)

The system incorporates a well-established open-source library for cryptographic operations.

Problem: This library contained a bug. (ElGamal generators selected as non-quadratic residuals of \(\mathbb{Z}_p^* \))

Solution:
- We made Bouncy Castle aware and they fixed it in time.
Summary

• Probably most transparent electronic voting project
• One of the few systems addressing verifiability
• Probably the only one in use that addresses the secure platform problem
• One of the few projects that aims for a Common Criteria certificate (EAL4+)

• Some proposals for further improvements
Thank you for your attention!

Questions?