
Secure Internet Voting on Limited Devices with Anonymized
DSA Public Keys

Rolf Haenni
Bern University of Applied Sciences

CH-2501 Biel, Switzerland

Oliver Spycher
Bern University of Applied Sciences

CH-2501 Biel, Switzerland
University of Fribourg

CH-1700 Fribourg, Switzerland

Abstract

This paper presents an Internet voting protocol, which
is primarily designed for limited voting devices such as
smart cards or mobile phones. The minimum require-
ment for these devices is the ability to compute one El-
Gamal encryption and one DSA signature in reasonable
time. The protocol is based on an anonymization mecha-
nism for DSA public keys, which can be installed on top
of an existing DSA public-key infrastructure for each in-
dividual voting event. The protocol protects the privacy
of the voters and offers public verifiability, but it is not
receipt-free or coercion-resistant. As a counter-measure
against vote buying or coercion attacks, it can be used as
the electronic component of a hybrid voting system.

1 Introduction

The challenge of building secure Internet voting systems
has attracted a great deal of attention among researchers
in applied cryptography. Over the years, numerous vot-
ing protocols have been proposed in the literature. While
the number of security properties of these protocols has
increased steadily over the years, new requirements have
been added to the list of desirable security features. Al-
though an impressive security level has been reached to-
day by increasingly complex voting protocols, the all-
embracing “perfect” voting system is still missing. Some
of the most important open problems are long-term secu-
rity (What if today’s cryptography becomes breakable in
the future?), the insecure platform (What if the voter’s
computer is compromised by malware?), and voter co-
ercion (What if voters are forced to vote in a particular
way?). A certain family of protocols is particularly de-
signed to address the coercion problem [3, 9, 25, 34],
but due to the complexity of the involved cryptography,
they are relatively inefficient and therefore not yet appli-
cable for large-scale political elections. Another family
of protocols is designed for electronic voting at protected

polling stations [7, 14, 29], but these ideas are not di-
rectly transferable to conduct elections over the Internet.

1.1 Contribution

The Internet voting protocol presented in this paper does
not directly address the above-mentioned security prob-
lems, it rather focuses on making the actual voting pro-
cess as slim as possible. We assume thus the availability
of enough computational power before and after the of-
ficial voting period, whereas only minimal performance
is assumed with regard to the voter’s computational de-
vice, which runs some software for casting the votes.
This seems to be a reasonable standpoint: while com-
putational power for preparing and tallying an election
can easily be scaled up to the actual size of the elec-
torate and to meet the resulting computational needs, we
must usually take it for granted that voters are equipped
with devices of limited performance (e.g., smart cards,
mobile phones, or older Javascript-based web browsers),
and that they are not willing to wait for more than a few
seconds to complete the vote casting process.

To meet the above requirement of a lightweight vote-
casting client, we propose a protocol which involves on
the voter’s side a single ElGamal encryption and a sin-
gle DSA signature. In more technical terms, only four
modular exponentiations must be computed: two for the
encryption, one for the digital signature, and one for an-
other purpose. To avoid that the signature creates a direct
link from the vote back to the voter, the protocol involves
an anonymization mechanism for DSA public keys dur-
ing the election preparation phase. The trick is to shuf-
fle the public keys of the electorate while simultaneously
replacing the generator of the underlying cyclic group
[26, 32]. This mechanism can be installed on top of an
existing DSA public-key infrastructure for each individ-
ual voting event. The protocol may therefore be consid-
ered to be applied in combination with existing eID cards
that provide DSA key pairs for online authentication or

digital signatures.
Compared to existing protocols with similar properties

(e.g., schemes based on homomorphic tallying [10, 21]
or mix-nets [5, 23, 30]) and corresponding implementa-
tions (e.g., Helios [1, 2]), the novelty and main benefit
of our approach is the possibility for voters to remain
fully anonymous. This means that not only the content
of somebody’s vote remains secret, but also the existence
of somebody’s vote. This is a critical privacy property,
which is needed to guarantee the fairness of the voting
system. If a system provides the information on who al-
ready voted to the electorate, then preliminary conclu-
sions on the expected turnout of certain electoral sub-
groups (members of political parties, employees of com-
panies, voters of a given age or sex, etc.) can be drawn
during the voting period. This could therefore influence
the final result of the election.

1.2 Structure of Paper
In Section 2, we show the requirements on remote elec-
tronic voting systems as they are commonly postulated.
We also describe the concept of a hybrid voting system,
which may serve as a general counter-measure against
the above-mentioned coercion problem. In Section 3,
we introduce the voting protocol stepwise. We start
with the above-mentioned anonymization mechanism for
DSA public keys. Next, we describe a core version of the
protocol that contains all indispensable ingredients. Fi-
nally, we propose three additional protocol components,
which can be added independently to the core version.
One of the additional components increases the number
of modular exponentiations on the voter’s side from four
to five. We describe the security features offered by our
protocol and the proposed extensions and compare them
with two related protocols. In Section 4, we give some
background information on the Selectio Helvetica sys-
tem, an implementation of the protocol as a web applica-
tion with a Javascript-based vote-casting client. We de-
scribe some practical constraints of this particular setting
and outline possible solutions. We also report on our ex-
perience with the Baloti.ch voting platform, which uses
Selectio Helvetica under the hood. In Section 5, we con-
clude the paper with some final remarks and an outlook
to future work.

2 Internet Voting

An idealized voting systems guarantees the correctness
of the election result and the secrecy of the vote under all
possible circumstances. In traditional paper-based voting
systems, correctness is established by supervising every
single step of the voting and tallying procedures by in-
dependent observers. The only unsupervised step is the

actual voting act, which may take place in a private vot-
ing booth to fully assure the secrecy of the vote. Both
the supervision by independent observers and the pri-
vacy of the voting booth are simple and effective mech-
anisms, but they are hard to transfer into the context of
remote electronic elections over the Internet. Neverthe-
less, correctness (together with verifiability) and privacy
are widely accepted to be two of the most essential secu-
rity requirements for electronic voting systems.

2.1 Security Requirements

The following non-exhaustive list defines some of the
most important security requirements informally. We re-
fer to [24] for a more systematic discussion and for fur-
ther details.

Correctness. The final election result reflects exactly
the electorate’s choice. This embraces the following sub-
requirements:

a) Democracy. Only eligible voters can vote, and each
eligible voter can cast at most one vote that counts.

b) Integrity. After casting, votes cannot be altered,
deleted, or substituted.

c) Accuracy. All valid votes are counted, invalid votes
are not counted.

All aspects of correctness are crucial for an electronic
voting system, because attacks are inherently more scal-
able than in traditional voting systems.

Privacy. No one can obtain more information about the
votes and the participating voters than what can be in-
ferred from the final election result. This embraces the
following sub-requirements:

a) Secrecy. No one can tell how a particular voter or any
possible subgroup of voters actually voted.

b) Anonymity. No one can tell who actually voted.

c) Receipt-Freeness. No one can prove to someone else
(e.g., by handing over a voting receipt) whether and
how he or she voted.

d) Fairness. No one can infer partial results before the
election is closed.

Privacy with all its aspects is an essential integrity safe-
guard, because it allows voters to cast their votes in full
independence.

2

Verifiability. The correctness of the final election re-
sult (which involves every single aspect in the above def-
inition of correctness) can be verified. There are two dif-
ferent forms of verifiability:

• Universal Verifiability. Anyone (including the voter
themselves) can verify the correctness of the election
result.

• Delegated Verifiability. The verification task is dele-
gated to a group of independent auditors.

A weaker form of verifiability, sometimes called individ-
ual verifiability, allows voters to check the inclusion of
their votes in the final election result, but not the other
aspects of correctness.

Robustness. A small set of broken, unavailable, or cor-
rupt system components or a small group of conspiring
parties (election authorities, system administrators, vot-
ers, external attackers, etc.) cannot disrupt the election
process or compromise correctness or privacy.

Coercion-Resistance. No one can urge voters (neither
by offering them a reward nor by intimidation) to vote in
a particular way, to vote at random, not to vote at all, or
to give away their private keying material. This implies
that a coercer cannot decide whether a voter complies
with the demands [25].

The protocol presented in this paper offers a solu-
tion to all of the above requirements, except for receipt-
freeness and coercion-resistance. Therefore, we do not
directly address the vote buying or voter coercion prob-
lems, but since the protocol contains all the prerequisites
of a hybrid voting system [33], we offer at least an indi-
rect solution.

2.2 Hybrid Voting Systems
A hybrid voting systems integrates a traditional and an
electronic voting system and combines them with a vote
revocation mechanism, which allows voters to overrule
their electronic votes in the protecting environment of a
polling station. Potential vote buyers or coercers must
thus assume that corrupted voters will usually revoke
their electronic votes. This clearly increases the price of
a successful vote buying or coercion attack considerably.

For an e-voting protocol to be used as the electronic
voting channel of a hybrid system, it needs to comply
with two requirements [33]. First, registered voters that
abstained from casting an electronic vote need to be able
to unambiguously prove to the voting officials that they
are still eligible for casting their vote. Second, if their
electronic vote has been cast, voters need to be able

to prove ownership of their electronic vote in the elec-
tronic ballot-box. The protocol presented in this paper
satisfies these requirements. In particular, it guarantees
that all eligible voters own respective vote identifiers for
their votes, even if someone else has voted on their be-
half. This is a subtle difference to other e-voting sys-
tems, which only guarantee that the parties who actu-
ally voted are in possession of vote identifiers (or full
receipts). Thus, these systems do not meet the above re-
quirements of a hybrid system.

Two different revocation procedures are given in [33].
Since the protocol that we present here guarantees vote
identifiers to vote owners, but not full receipts, revoca-
tion is restricted to Procedure 2 of [33]. The general idea
of this procedure is to have two electronic ballot-boxes,
one for the votes and one for the revocations, and one
physical ballot-box for the paper votes. To allow univer-
sal verifiability, both electronic ballot-boxes are realized
by public bulletin boards. At the end of the voting period,
each of the three ballot-boxes is counted independently,
and the final result for a given candidate is computed by
subtracting the candidate’s revocations from the sum of
the candidate’s electronic and paper votes.

To preserve the correctness of the result, each revoca-
tion must exactly match with one electronic vote, but the
link between them must be hidden. Procedure 2 in [33]
suggests that voters re-encrypt their electronic votes, for
which they have proven ownership using their vote iden-
tifiers, and that they prove towards the voting officials in
the polling station the correctness of the re-encryption (in
zero-knowledge and in a designated way). Upon success-
ful verification, the officials generate a (multi-)signature
for the re-encrypted vote. The re-encrypted vote together
with the signature is then posted as a valid revocation
onto the bulletin board, and the voter is granted access
to the physical ballot-box for casting the final vote on
paper. To prevent voters from revoking the same vote
multiple times, the voting officials at the polling station
need to keep track of their names (or of the votes they re-
voked). To protect the vote secrecy of those who revoked
their electronic vote, the revocations need to be mixed in
a re-encryption mix-net before decrypting them for the
final tally (except in the case of a homomorphic tallying
procedure).

While most of the security properties of the electronic
system are maintained in the hybrid version, it creates
some two minor problems. First, it is possible for a group
of conspiring voting officials to post additional votes
with valid signatures to the electronic ballot-box contain-
ing the revocations. By doing so, they cannot directly vi-
olate the integrity of somebody’s electronic vote, but they
can introduce additional votes, which will be subtracted
from the final result. It is also possible for an official to
divulge the links between votes and corresponding revo-

3

cations, which means that coercions-resistance in the hy-
brid system depends on the discretion of the voting offi-
cials. Since they need to be trustworthy anyway to prop-
erly run the traditional voting procedure, this appears to
be a minor problem.

3 Protocol Description

In this section, we introduce our protocol proposal and
discuss its properties. To facilitate an unfamiliar reader’s
first approach, we start by discussing some elementary
cryptographic building blocks. A core component and
the protocol itself are discussed next. We will then an-
alyze the protocol’s security properties and propose two
possible enhancements. We conclude this section by dis-
cussing the relation to two existing protocols.

3.1 Cryptographic Building Blocks
The protocol assumes several modern cryptographic
building blocks. Apart from standard ElGamal en-
cryption/decryption, we also need threshold cryptosys-
tems, non-interactive zero-knowledge proofs of knowl-
edge, anonymous authentication, mix-nets, and anony-
mous channels. Some of these building blocks will be
briefly described below.

ElGamal Cryptosystem. The ElGamal cryptosystem
is based on a multiplicative cyclic group (G, ·) of prime
order q, for which the computational and the decisional
Diffie-Hellman assumptions are believed to hold. The
most common choice for such a group is a subgroup
Gq = 〈g〉 ⊆ Z∗p of order q|p− 1, where p and q are
large primes (so-called safe primes). The public param-
eters of an ElGamal cryptosystem are thus p, q, and
the generator g of Gq. An ElGamal key pair is a tuple
(x,y), where the x ∈R Zq is the randomly chosen private
key and y = gx ∈ Gq the corresponding public key. If
m ∈ Gq denotes the message to encrypt, then the pair
(a,b) = Encrypty(m,r) = (gr,m · yr) is the ElGamal en-
cryption of m with randomness r ∈R Zq. For a given en-
cryption e = (a,b), m can be recovered by computing
m = Decryptx(e) = a−x · b. Note that the ElGamal en-
cryption function is homomorphic with respect to multi-
plication, which means that ciphertexts can be multiplied
to get an encryption of the product of respective plain-
text.

Threshold Cryptosystems. A cryptosystem such as
ElGamal is called threshold cryptosystem, if the private
decryption key is shared among n parties, and if the num-
ber of parties required to cooperate in the decryption pro-
tocol exceeds a certain threshold t ≤ n. A threshold ver-

sion of the ElGamal cryptosystem results from sharing
the private decryption key using Shamir’s secret sharing
scheme [31]. To avoid the need for a trusted third party
to generate the private key shares, it is possible to let the
n parties execute a distributed key generation protocol
[17].

Plaintext Equivalence Test. A distributed plaintext
equivalence test (PET) in a threshold cryptosystem
checks if two ciphertexts are encryptions of the same
plaintexts, but without revealing any information about
the two plaintexts [22]. For two ElGamal encryptions
e1 = (gr1 ,m1 · yr1) and e2 = (gr2 ,m2 · yr2), a simple PET
consists in checking if e1/e2 is an encryption of 1. Sim-
ply decrypting e1/e2 into m1/m2 would obviously re-
veal information about the plaintexts, but not if alterna-
tively (e1/e2)z is decrypted into (m1/m2)z for some se-
cret blinding value z ∈R Zq shared by the holders of the
private decryption key x. PETx,z(e1,e2) ∈ {true, false}
denotes the application of a plaintext equivalence test for
two encryptions e1 and e2.

DSA Signatures. The Digital Signature Algorithm
(DSA) is a widely used US Federal Government standard
for digital signatures. The public parameters (p,q,g) and
the key pairs (x,y) are identical to an ElGamal cryptosys-
tem. If m denotes the message to sign and H(m) ∈ Zq a
cryptographic hash code of m, then a DSA signature of
m is a pair (a,b) = Signx(m,r) ∈ Gq×Gq with

a = (gr mod p) mod q,

b = (H(m)+a · x) · r−1 mod q,

and randomness r ∈R Zq. A given signature s = (a,b)
can be verified by checking if the equation a = (gu ·
yv mod p) mod q holds for u = H(m) · b−1 mod q and
v = a · b−1 mod q. The signature verification is denoted
by Verifyy(s,m) ∈ {true, false}.

Zero-Knowledge Proofs of Knowledge. A zero-
knowledge proof (ZKP) allows a party to demonstrate
to another party that a mathematical statement is true,
but without revealing anything other than the truth of the
statement itself. A particular class of zero-knowledge
proofs are proofs of knowledge, in which the prover
demonstrates knowledge of the preimage x ∈ X of a pub-
lic value y = φ(x) ∈ Y , where φ : X → Y is a candidate
one-way function. Such proofs can be constructed as in-
teractive Σ-protocols, if φ is a homomorphism with a fi-
nite domain X [4]. Two of the simplest and most fre-
quently used instances of such Σ-protocols are the proof
of knowledge of a discrete logarithm y = logg x in a mul-
tiplicative group Gq = 〈g〉 of finite order q, and simi-
larly, the proof of equality of two discrete logarithms

4

y = logg x = logg′ x
′, where g′ is another generator of Gq.

Using the Fiat-Shamir heuristic [13], interactive proof
can be turned into non-interactive ones (using the ran-
dom oracle model).

Anonymous Channels. An anonymous channel hides
the correspondence between senders and their messages,
i.e., the senders of the messages remain anonymous or
untraceable. The most common realization of anony-
mous channels is based on mix-nets [6]. A mix-net con-
sists of a sequence of servers, each of which receives a
batch of input messages and produces a batch of output
messages in a permuted (mixed) order. One of today’s
most widely used implementation of an anonymous In-
ternet channel is TOR [11, 18], which allows users to hide
their identity while browsing the Web or using other In-
ternet services. As a simple alternative to using such
designated systems, people may protect the privacy of
their online activities by accessing the Internet from pub-
lic access points (Internet cafés, public libraries, public
WLAN, etc.). The anonymity provided in that case may
not be perfect under all possible circumstances, but as
long as people avoid entering personal data, it should be
acceptable for most purposes.

Public Bulletin Board. A public bulletin board is a
broadcast channel with memory. This means that every-
body is allowed to append new entries and to read its
content, but nobody is allowed to delete or modify exist-
ing entries. Such a bulletin board may have the additional
functionality of filtering out invalid or double entries, for
example by checking the validity of an attached digital
signature or proof of knowledge. For robustness, bulletin
boards should be replicated [20, 28].

3.2 Shuffling DSA Public Keys
Before turning our attention to the actual e-voting proto-
col, let us first look at one of its core components. The
task of this component is to shuffle a given list of DSA
public keys such that the keys in the shuffled list cannot
efficiently be linked to the keys in the original list. The
goal thus is to create a list of anonymized public keys
(or simply anonymous keys), which can no longer be at-
tributed to individual parties, but which can still be used
for verifying DSA signatures. The trick is to replace the
generator of the underlying cyclic group.

Formally, suppose that (p,q,g) are the public DSA
parameters and let Y = (y1, . . . ,yn) = (gx1 , . . . ,gxn) be a
given list of public keys. If π ∈ Σn is a permutation se-
lected from the group Σn of permutations on {1, . . . ,n},
then Yπ = (yπ(1), . . . ,yπ(n)) denotes the permuted list of
public keys. To unlink the elements of Yπ from Y ,
consider an additional random value α ∈R Zq and let

Y α
π = (yα

π(1), . . . ,y
α

π(n)) be the permuted list of public keys
raised to the power of α . Note that each private key xi to-
gether with

ŷi := yα

π(i) = (gxi)α = (gα)xi

forms a valid DSA key pair (xi, ŷi) for the public pa-
rameters (p,q, ĝ), where ĝ := gα denotes the new gen-
erator. Therefore, if ĝ is used to sign m with pri-
vate key xi, then s = Signxi

(m,r) can be successfully
verified with the anonymous key ŷi. In other words,
Verifyŷi

(Signxi
(m,r),m) returns true, if ĝ is used instead

of g to compute Sign and Verify. Note that ŷi is usually
unknown to the verifier, but since knowing xi is suffi-
cient to compute ŷi = ĝxi , it can simply be attached to
s. The verification then involves a preliminary step of
checking whether ŷi is an element of the permuted list
of anonymous keys Ŷ := {ŷ1, . . . , ŷn} = Y α

π . The whole
procedure can thus be seen as an instance of a group sig-
nature scheme, which allows each member of a group
{1, . . . ,n} to anonymously sign a message on behalf of
the group [8].

Repeated Shuffling. If a single authority performs the
shuffling of the public keys, then links between the mem-
bers of Y and Ŷ can easily be established by the authority
itself. Even worse, publishing π would entirely wipe out
the anonymity of the scheme. A single shuffling author-
ity constitutes thus a severe single point of failure.

This problem can easily be solved by shuffling the
public keys multiple times by independent authorities,
so-called anonymizers. Suppose that there are m ≥ 2
anonymizers A j, 1 ≤ j ≤ m, for which π j ∈ Σn denotes
the selected permutation on {1, . . . ,n} and α j ∈R Zq the
randomly chosen exponent. Let A j compute Ŷj and ĝ j
by applying π j,α j to Ŷj−1 and α j to g j−1, starting with
Ŷ0 := Y and ĝ0 := g:

Ŷ0
π1,α1−−−−→ Ŷ1

π2,α2−−−−→ Ŷ2 · · · · · ·
πm,αm−−−−→ Ŷm,

ĝ0
α1−−−−→ ĝ1

α2−−−−→ ĝ2 · · · · · ·
αm−−−−→ ĝm.

At the end of the shuffling process, we obtain from Am
the list of anonymous keys Ŷ := Ŷm and the new genera-
tor ĝ := ĝm. Note that the whole repeated shuffling proce-
dure corresponds to applying the composed permutation
π = πm ◦ · · · ◦π1 and the product exponent α = ∏

m
j=1 α j

to the original list Y and the original generator g. The
unlinkability between the two lists Y and Ŷ is thus given,
if π j and α j remain secret for at least one anonymizer
(due to the assumed difficulty of the discrete logarithm
problem).

Verifiable Shuffling. To guarantee the correctness of
the repeated shuffling procedure under all possible cir-
cumstances, additional measures must be taken to ensure

5

that the anonymizers do not deviate from the protocol. In
other words, we want the shuffling to be verifiably cor-
rect, which means that the anonymizers need to provide
additional information to allow their computations to be
publicly verifiable.

This problem is similar to re-encryption mix-nets,
which are designed to transform an input list of (usu-
ally ElGamal) ciphertexts E = {e1, . . . ,en} into another
list of ciphertexts Ê = {ê1, . . . , ên} with the same plain-
texts in permuted order [6]. To avoid a single point of
failure, a mix-net consists of at least two mix-servers
M1, . . . ,Mm, m ≥ 2, which perform each a single shuf-
fling and re-encryption step. In the same way as ex-
plained above, i.e., starting with Ê0 := E, we get a se-
quence Ê0 → Ê1 → ··· → Êm of encryption lists, from
which we obtain the final result Ê := Êm. Each mix-
server M j, after publishing the output list Ê j, provides
a non-interactive zero-knowledge proof ZKP j of correct
shuffling. The exact shape and the efficiency of the
zero-knowledge proof depend on the chosen approach
[16, 19, 27, 36]. The best techniques available today
require between 6n and 8n modular exponentiations for
generating and between 6n and 10n modular exponenti-
ations for verifying the proof [19]. This is a tremendous
improvement over the naı̈ve approach based on general
Boolean proof composition techniques, where the result-
ing proof size is quadratic. Subsequently, we discuss
three different approaches that are all based on existing
proof techniques from the literature.

Approach 1. We could directly apply any of the ex-
isting mix-net techniques to our problem by considering
each public key yi ∈ Y as a trivial ElGamal encryption
ei = (1,yi) with randomness 0 and by letting each mix-
server M j additionally raise the input encryptions in Ê j−1
and the generator ĝ j−1 to the power of the randomly cho-
sen exponent α j ∈R Zq. An additional zero-knowledge
proof ZKP′j of doing so correctly must be provided to-
gether with ZKP j. At the end of the mixing process, the
output encryptions are decrypted into the list Ŷ of anony-
mous keys. For the re-encryption during the mixing pro-
cess and the decryption at the end, this method requires
an additional key pair (x,y) of a homomorphic threshold
cryptosystem.

The number of additional modular exponentiations for
generating ZKP′j is n + 1, i.e., generating the combined
proof ZKP j ∧ZKP′j requires 7n + 1 modular exponenti-
ations in the best case, i.e., with the protocol proposed
in [19]. We do not give further details on this method,
because the computational overhead for dealing with El-
Gamal encryptions (two values instead of one) and for
the final threshold decryption seems not to be appropri-
ate.

Approach 2. A more explicit solution for our prob-
lem is described in Neff’s paper on verifiable secret shuf-
fles [26]. He provides a protocol that solves the so-
called general n-shuffle problem. In the terminology of
our paper, a simplified version of this problem can be
stated as follows. Suppose that g, ĝ, and the values
of two sequences Y = {y1, . . . ,yn} and Ŷ = {ŷ1, . . . , ŷn}
are all publicly known values of Gq. The prover knows
α = logg ĝ, but α is unknown to the verifier. The prover
wants to convince the verifier that there is some permu-
tation π ∈ Σn such that ŷπ(i) = yα

i holds for all 1≤ i≤ n,
but without revealing any information about α or π .

As already pointed out in [26], this is clearly a refor-
mulation of our problem of verifying the correctness of a
shuffled list of DSA public keys. Neff’s general protocol
solves this problem by reducing it to a simpler problem,
in which it is assumed that the prover also knows the dis-
crete logarithms xi = logg yi of the input values yi.

According to [26], the number of modular exponentia-
tions required to construct the full proof is 8n+5, and the
number of modular exponentiations to verify it is 9n+2.
From an efficiency point of view, Neff’s approach is thus
comparable to the first approach described above. The
drawback of this protocol is that it is a 7-move proof,
which is not very practicable. Note that the protocol as
presented in [26] contained some flaws, but they have
been addressed in [27]. Unfortunately, the focus of [27]
is no longer on solving the n-shuffle problem.

Approach 3. Rather than providing a proof of abso-
lute correctness, it may be sufficient if each mix-server
provides strong evidence of not having deviated from the
protocol. In the mix-net literature, such an alternative
approach is known as randomized partial checking, or
RPC for short [23]. RPC-based mix-nets are exception-
ally efficient in comparison with ZKP-based mix-nets.
The underlying idea is simple but very effective. After
performing the mix, the mix-servers are challenged in
revealing a random subset of their input/output relations,
but such that the unlinkability remains in place. A cor-
rupt mix-server is then likely to be caught, even if it at-
tempts to tamper only a few outputs. This assures a very
high overall probability of correct shuffling.

To realize RPC-based mixing of DSA public keys, ev-
ery anonymizer applies consecutively two permutations
π ′ and π ′′ (to simplify the formal notation, we omit the
anonymizer’s index j). They also select two random ex-
ponents α ′ and α ′′. This implies that π = π ′′ ◦ π ′ and
α = α ′ ·α ′′ are the anonymizer’s secret shuffling param-
eters. Let Ŷ ′ := Y α ′

π ′ be the intermediate list and Ŷ := Y α
π

the output list of DSA keys obtained from shuffling the
input list Y . After publishing Ŷ ′ and Ŷ , the challenge re-
sults from dividing Ŷ ′ randomly into two portions of size
n/2. Let I′, I′′ ⊆ {1, . . . ,n}, I′ ∪ I′′ = {1, . . . ,n}, be cor-

6

responding disjoint subsets of indices. The anonymizer
must then reveal the values π ′−1(i) for each i ∈ I′ and
π ′′(i) for each i ∈ I′′. In other words, either the link “to
the left” or the link “to the right” must be revealed, but
never both links at the same time. This guarantees the
unlinkability between the elements of Y and Ŷ , and the
probability that tampering κ outputs remains unnoticed
is 1/2κ .

For each revealed link, the anonymizer must provide
a zero-knowledge proof of knowledge of a secret expo-
nent α ′ or α ′′, for which the two values match. More
precisely, two proofs of equality of n/2 discrete loga-
rithms are required, one for the links “to the left” or one
for the link “to the right”. The generation (and verifica-
tion) of such a partial proof requires n/2 modular expo-
nentiations. Note that two additional exponentiations are
needed for proving that ĝ = gα ′·α ′′ , i.e., a total number
of n + 2 modular exponentiations is required for the full
proof. This is obviously far better than each of the two
exact proofs described above.

3.3 Protocol Description
The security of our protocol depends heavily on the
anonymity provided by shuffling the DSA public keys
as described in the previous subsection. As we will show
now, the remaining elements of the protocol are rather
simple. Casting a vote, for example, essentially con-
sists in signing the encrypted candidate choice with the
anonymized DSA public key. To determine the final elec-
tion result, the votes carrying a valid signature are de-
crypted and the resulting plaintext votes are counted.

The protocol involves an election authority, which is
responsible for setting up an election (specifying the list
of candidates, compiling the electoral register, defining
the official voting period, etc.). Other responsibilities are
shared among parties from three different groups:

a) The group of eligible voters, V = {V1, . . . ,Vn}, none
of which are are assumed to be trustworthy.

b) The group of anonymizer, A = {A1, . . . ,Am}, of
which at least tm ≤ m are assumed to be trustworthy.

c) The group of talliers, T = {T1, . . . ,Tr}, of which at
least tr ≤ r are assumed to be trustworthy.

We collectively refer to anonymizers and talliers by the
term trustee. For the sake of simplicity, we assume
the trustees to be individuals, but in reality, they could
also be independent organizations. Any intersection of
these groups is explicitly allowed. Particularly, voters
can work as anonymizers or talliers. We also assume the
presence of adversaries and coalitions of adversaries, but
without explicitly formalizing them as a group.

We distinguish in our protocol five consecutive steps,
of which the first two need not to be repeated for every
election. Let us now describe these steps one after an-
other.

1. Setup. During the setup, the election authority
defines sufficiently secure ElGamal/DSA parameters
(p,q,g). These values are published and can be used
across multiple voting events. The election authority also
installs a public bulletin board B as a public communi-
cation channel, and an anonymous channel C for posting
the votes to the board. The talliers employ a distributed
key generation algorithm to obtain a threshold ElGamal
key pair (x,y). The common public key y is published,
and the shares of the private key x are kept secret. All val-
ues published during the setup can be used across multi-
ple elections.

2. Registration. The election authority sets up a DSA
public-key infrastructure (PKI) for potential voters. We
do not specify all the details of this step, but it must
certainly involve some sort of personal authentication.
Upon successful authentication, potential voters are
equipped with a DSA key pair (xi,yi). The key gener-
ation procedure must guarantee that the private key is
only known to its owner. Corresponding public-key cer-
tificates are published to confirm the binding between the
public key and the identity of the person behind it. Note
that the same PKI may be used for multiple elections or
even for purposes other than voting, i.e., we do not re-
quire the registration to involve the verification of some-
one’s eligibility. This allows us to install the protocol on
top of an existing DSA or ElGamal PKI, e.g., in countries
with existing electronic identity cards.

3. Election Preparation. To prepare an election, the
election authority publishes the set C of possible choices,
from which voters may choose exactly one value. In
multi-candidate elections, we consider C to be set of all
admissible combinations of candidates. The election au-
thority must also compile and publish the electoral regis-
ter, which includes the certificates of all eligible voters.
Note that the electoral register is specific to a particular
election, precinct, or district, and may thus change from
election to election. The election authority must also an-
nounce the begin and the end of official voting period.

To conclude the election preparation, the DSA public
keys of all eligible voters are copied from the certificates
in the electoral register. Let Y = {y1, . . . ,yn} be the re-
sulting list, which is taken by the anonymizers as input
to the shuffling procedure of the previous subsection. Af-
ter performing the shuffling, the anonymized output list

7

Ŷ = {ŷ1, . . . , ŷn} is published together with the new gen-
erator ĝ.

4. Vote Casting. Let ci ∈C be the preferred choice of
voter Vi. To cast ci as Vi’s vote, the following steps need
to be performed:

1. Encrypt ci with the talliers’ common public key y and
randomness r1 ∈R Zq:

ei = Encrypty(ci,r1).

2. Sign ei with Vi’s private key xi and randomness r2 ∈R
Zq:

si = Signxi
(ei,r2).

3. Compute the anonymous key using the new generator
ĝ:

ŷi = ĝxi
i .

4. Submit the ballot Bi = (ei,si, ŷi) over the anonymous
channel C to the public bulletin board B.

After casting the vote, Vi may want to check if B j has
appeared correctly on the public bulletin board. If both
the bulletin board and the anonymous channel are con-
structed in a robust way, and if the Vi is using a secure
platform, this will always be the case. If not, Vi may ei-
ther try to resubmit Bi or to get into contact with the elec-
tion authority to solve the problem. Note that the option
of resubmitting ballots may provide a desirable feature
of the voting system called re-voting. Voters are then al-
lowed to change their votes during the voting period (see
below).

5. Tallying. The tallying procedure starts as soon as the
election is closed. Let B = (e,s, ŷ) ∈B be an entry from
the public bulletin boards, which has been recorded dur-
ing the official voting period. To be considered in the
final tally, it must satisfy the following conditions:

1. ŷ is a valid anonymous key, i.e., ŷ ∈ Ŷ .

2. s is a valid signature for e, i.e., Verifyŷ(e,s) = true.

3. B is the only, the first, or the last valid entry for ŷ
in B. The actual choice between the first or the last
ballot depends on whether re-voting is allowed or not.

Checking these conditions requires only publicly avail-
able data. It could therefore be delegated to the public
board itself.

The encrypted votes of the remaining ballots satis-
fying these conditions are finally decrypted by the tal-
liers (using their shares of the private key x and by zero-
knowledge providing proofs of correct decryption). The

final election result is then determined by counting the
resulting plaintext votes c = Decryptx(e) for each c ∈C.
Invalid plaintext votes are dropped.

3.4 Discussion
Despite its simplicity, the protocol described in the previ-
ous section possesses some interesting properties. Most
importantly, it provides an exceptionally simple and
lightweight vote casting procedure, which consists of
“standard cryptography” (ElGamal, DSA, modular ex-
ponentiation) only. Implementing the voting application
is therefore not a great challenge and can be realized with
standard cryptographic libraries and easily deployed on
devices with limited performance. Note that the num-
ber of modular exponentiations is always exactly four
(two for the ElGamal encryptions, one for the DSA sig-
nature, one for computing the anonymous key), which
means that the running time of the voting application is
independent of the number of choices |C|. This is an
important advantage over the family of protocols relying
on homomorphic tallying [10, 21], for which proving the
validity of the votes is indispensable. Note that the mod-
ular exponentiations needed for encrypting the vote and
generating the signature are independent of the vote and
can therefore be computed ahead of time.

Let us now look at the security properties of the pro-
posed protocol. We will address all the requirements
introduced in Subsection 2.1. Our informal arguments
are based on typical cryptographic assumptions such
as the difficulty of computing discrete logarithms prob-
lem (DLP), the decisional Diffie-Hellman assumption
(DDH), or the existence of collision-resistant crypto-
graphic hash functions. We also take it for granted, that
the security properties provided by the protocol compo-
nents (ElGamal encryption, DSA signatures, shuffling,
anonymous channel, public bulletin board) hold under
all possible circumstances. Establishing a more formal
security model for the whole voting system and corre-
sponding formal security proofs for the desired proper-
ties is still work in progress at the time of writing.

Correctness and Verifiability The protocol offers uni-
versal verifiability with respect to all aspects of correct-
ness. a) Democracy. The eligibility of the voters can be
checked by inspecting the public electoral register. The
certificates included in the electoral register guarantee
that all public keys belong to eligible voters. The proof of
correct shuffling assures then that every anonymous key
is linked to a public key from the electoral register and
therefore belongs to an eligible voter. Finally, the signa-
tures included in the ballots confirm that each vote be-
longs to an eligible voter. Multiple ballots from the same
eligible voter contain the same anonymous key and are

8

therefore detected during the tallying phase. b) Integrity.
The signature included in the ballot assures that votes
cannot be altered or substituted in a ballot. Altering or
deleting ballots before reaching the bulletin board is pos-
sible in principle, but this could easily be detected by the
voters themselves by inspecting the board. Missing bal-
lot could easily be re-submitted. Deleting ballots from
the board is in conflict with the assumed append-only
property of the board. c) Accuracy. After decrypting the
votes, valid votes can easily be separated from invalid
ones, and the tallying of the valid votes can easily be
verified by repeating the counting procedure.

Privacy Our protocol also provides a high degree of
privacy. The key mechanism for providing privacy is the
public key shuffling procedure in the election preparation
phase. With receipt-freeness as the only exception, all
privacy aspects are guaranteed. a) Secrecy. Every plain-
text vote is unambiguously linked to an anonymous key,
but linking the anonymous key back to its owner is pro-
hibited by the anonymous channel and the unlinkability
property of the public key shuffling procedure. The same
argument prevents linking a set of plaintext votes to the
corresponding group of voters. b) Anonymity. To find
out whether a particular eligible voter has actually voted,
we must again establish a link to an actual plaintext vote.
This is impossible for the same reasons given above.
c) Receipt-Freeness. After casting a vote, the voter pos-
sesses three secret values: the private signature key, the
randomness of the encryption, and the randomness of the
signature. Each of them allows the voter to prove owner-
ship of the ballot on the bulletin board. The private key
even allows to prove vote abstention (without revealing
the key itself). Therefore, our protocol provides receipts
for all possible cases. d) Fairness. According to the pro-
tocol, votes are decrypted after the official voting period.
Under the assumption that at least tr ≤ r talliers follow
the protocol, it is impossible to infer partial results be-
fore the election is closed.

Robustness The repeated shuffling procedure and the
sharing of the decryption key makes our protocol ro-
bust against a minority of corrupt anonymizers or tal-
liers. To guarantee full robustness, we need to assume
that the anonymous channel and the public bulletin board
are themselves constructed in a robust way, for example
by replicating any crucial component or data.

Coercion-Resistance The missing receipt-freeness of
our protocol inherently prohibits coercion-resistance.
The possibility of allowing re-votes may seem to be an
appropriate countermeasure against coercion attacks, but
secretly casting a re-vote with the same anonymous key

could immediately be detected by the coercer.
As a real countermeasure for the missing coercion-

resistance property, we propose our protocol to be used
as the electronic component of a hybrid voting system
(see discussion in Subsection 2.2). The private signa-
ture keys serve as guaranteed voter identifiers, which are
needed to prove ownership of a particular encrypted vote
towards the officials at the polling station. If we assume
that revoking the electronic vote in the protecting envi-
ronment of a polling station remains unobservable to co-
ercers, then the system becomes coercion-resistant.

3.5 Additional Components

As shown in the previous subsection, our protocol satis-
fies most security requirements to a satisfactory degree.
However, there are some minor issues, which do not di-
rectly affect the security requirements under the stated
assumptions, but which may still be bothersome. Let
us discuss three such issues and solve them with corre-
sponding protocol enhancements.

Discarding Invalid Votes. In the protocol as presented
in Subsection 3.3, voters may encrypt values different
from the available choices in C. After decrypting these
votes in the tallying phase, they turn out to be invalid
and are thus removed from the final tally. The problem
of processing such invalid votes is that it allows voters
to use the voting system to broadcast a message to the
authorities or even the electorate, for example with the
goal of discrediting the system. This would be an attack
against the voting system itself, not against the correct-
ness or privacy of the election. To avoid such an attack,
we propose the following enhancement of the tallying
phase (vote casting remains unchanged).

Each valid choice c ∈ C is considered as a triv-
ial ElGamal encryption ec = (1,c) with randomness 0.
With EC = {ec : c ∈ C} we denote the set of all “en-
crypted” choices. Before decrypting the votes, the tal-
liers must now perform plaintext equivalence tests be-
tween the encrypted votes and the encrypted choices. If
PETx,z(e,ec) = false for all ec ∈ EC, then e is obviously
an invalid vote and can be discarded without decrypting
it.

Note that the presence of a trivial encryption enables
a simplified PET. Because c = Decryptx(ec) is publicly
known, it must not be protected. Instead of decrypt-
ing (e/ec)z = ez/ez

c, it is thus sufficient to decrypt the
nominator ez (the denominator decrypts into cz). As
a consequence, PETx,z(e,ec) degenerates into testing
Decryptx(ez)/cz = 1, which can be simplified even fur-
ther into Decryptx(ez) = cz. This means that the talliers
can pre-compute the values cz for all c ∈C. Invalid votes

9

can then be detected efficiently (in linear time) by verify-
ing if Decryptx(ez) corresponds with one of these values.

Preventing Vote Duplication. In the protocol as pre-
sented in Subsection 3.3, nothing prevents voters from
duplicating encrypted votes from the public board and
submitting them as their own votes. In other words, the
system allows voters to submit unknown votes, which is
certainly an unpleasant feature. Such cases may even be
undetectable, if the voters re-encrypt the encrypted votes
before submitting them. To solve this problem, we pro-
pose the following protocol enhancement, which makes
the vote casting process slightly more expensive.

Duplicating somebody else’s vote means that the en-
cryption randomness is unknown. To avoid vote du-
plication, the ballot must thus be extended with a non-
interactive zero-knowledge proof of knowing the ran-
domness. Note that the challenge included in the proof
must depend on the voter’s anonymous public key, be-
cause otherwise votes and proofs could be copied to-
gether. The proof itself is a simple proof of knowledge of
discrete logarithm, which requires one additional mod-
ular exponentiation. If the public board does not pub-
lish ballots with invalid proofs, then proving knowledge
of the encryption randomness also prevents voters from
writing arbitrary cleartext messages onto the board.

Imperfect Anonymous Channel. In practice, the
anonymous channel required for submitting the ballot to
the bulletin board may be hard to implement. Addition-
ally, it may be difficult to enforce its usage, as some vot-
ers may simply decide not to use the anonymous channel
at all. To protect the privacy of the voters in such situa-
tions, the ballots on the bulletin board may be mixed in a
verifiable re-encryption mix-net before being decrypted
for the final tallying. This is an additional anonymization
step, which is redundant in case of a perfect anonymous
channel. In case of an imperfect anonymous channel,
however, it prohibits an attacker from seeing somebody’s
vote in cleartext (the attacker still learns that somebody
voted, but not how). Inserting this additional mixing step
makes the tallying procedure more expensive, but since
it helps to improve the overall system security in some
situations, it is generally recommendable.

3.6 Relation to Existing Work
The idea of a voting scheme based on anonymous keys
is relatively unexplored in the literature. The idea first
appeared in Neff’s paper on verifiable shuffles [26], but
only an incomplete sketch of the voting protocol was
given. The most obvious difference to our approach is
Neff’s idea of letting the voters doing their own shuf-
fle before casting a vote. This implies that voters are

responsible for their own privacy, while in our protocol
privacy is delegated to the set of anonymizers (and thus
relies on trust assumptions). On the other hand, Neff’s
idea implies that vote casting gets extremely expensive,
whereas our protocol provides a lightweight voting pro-
cedure. Neff briefly mentions the idea that mixing could
be done by a set of authorithies [26, Subsection 1.2], but
without working it out.

Another closely related work is the preliminary ver-
sion of this protocol, which recently appeared in [32].
There are various major and minor differences, but the
most obvious difference in the preliminary version is the
missing DSA signature in the ballot (a zero-knowledge
proof has been used instead) and the necessity of using
the voter’s secret as encryption randomness. As a result,
vote casting in the preliminary version requires a total of
five modular exponentiations and is thus slightly more
expensive than in the current protocol version. The pro-
tocol description as provided in [32] did also not mention
the extensions discussed in the previous subsection.

Compared to other protocols not providing receipt-
freeness, we encountered several important advantages
of our scheme. One advantage over the family of proto-
cols relying on homomorphic tallying has already been
mentioned at the beginning of Subsection 3.4. Another
important advantage over those protocols is the fact that
they do not provide full anonymity (everyone can tell
who has actually voted). Anonymity is generally a
problem in protocols which voters are authenticated di-
rectly, for example in schemes based on blind signatures
[15, 35, 37] or re-encryption mix-nets [5, 23, 30]. As al-
ready discussed in Subsection 1.1, this could have some
negative impact with respect to the fairness provided by
the voting system. Our protocol is immune against this
type of problem, because voters are authenticated anony-
mously as members of the electorate.

4 Selectio Helvetica

The Selectio Helvetica (SH) project aims at developing
an Internet voting application based on the protocol de-
scribed in this paper [12]. It is meant to constitute a proof
of concept for building an easy-to-setup and easy-to-use
voting service to non-political vote organizers. The im-
plementation differs from the protocol as described here
in some major and minor points. We will briefly discuss
some of these points and then give an overview of the
employed technologies in our implementation. We will
also report on our experience with the Baloti.ch voting
platform, which uses SH under the hood.

Differences. In the modified protocol underlying the
SH system, we explicitly introduce two additional play-

10

ers. The vote organizer assesses the voter’s right to vote,
and the voting provider acts as an intermediary among
voters and authorities, and writes to the public board.

From the decision of building an Internet voting ap-
plication, which should be available to users from all
around the world, it follows that voters will not be able
to properly register in person. There is also no global
public-key infrastructure, on which the system could
build up. The most important difference in SH is there-
fore the lack of a proper PKI. Instead, we decided to
realize the registration based on e-mail addresses, i.e.,
proving ownership of an e-mail address is sufficient for
registering as a voter. Furthermore, in contrast to the as-
sumption of the protocol, vote organizers may not neces-
sarily be in possession of a final electoral register prior
to the beginning of the voting phase. The adapted proto-
col underlying the SH system provides a solution for this
restriction.

Accordingly, we propose the following modification
of the registration phase. A potential voter first asks
the vote organizer to sign the provided e-mail address
in order to confirm the inclusion in the electoral regis-
ter. The voter then sends the signed e-mail address to the
voting provider, which in return sends the voter a reg-
istration credential by e-mail. The voter choses a pass-
word and sends the voting provider the registration cre-
dential along with a set of encrypted hash values of the
chosen password, each one designated to a distinct au-
thority. Upon reception of the expected registration cre-
dential, the voting provider associates the voter’s e-mail
address with an unused public key y on the public bul-
letin board and sends the authorities the encrypted hash
values. Then, whenever voters need to access their pri-
vate signature key x, they request it directly from the au-
thorities, simply by entering their password. Thus, all
they need to remember is their password, which they can
re-use at subsequent voting events.

Clearly, the convenience of this registration procedure
comes with a price. Based on the voters’ requests, the au-
thorities would be able to elicit how they voted. There-
fore, all votes need to be mixed prior to tallying. Also
the voters’ e-mail provider could register on their behalf.
However, such an attack would be noticed, as the regis-
tration credential can only be used once. In such a case,
voters would need to make a claim to the vote organizer
and have him repeat the registration. The former public
key is marked as spoiled and the corresponding anony-
mous public key revealed. Thus, ballot stuffing is not
possible using spoiled credentials.

In order to increase participation, vote organizers can
ask the voting provider to include voters in the electoral
register even after the vote casting phase has begun. In
that case, the voting provider needs to provide at least
as many voting credentials as expected voters. In order

to prevent ballot stuffing by a sufficiently large group of
authorities using unassigned credentials, the anonymous
public keys that correspond with unassigned public keys
are revealed after the vote casting phase.

The other phases of the SH system follow directly
from the protocol presented in this paper.

Employed Technologies. The SH system is imple-
mented using only well-defined, widely used, and
standardized technologies. Components communicate
through web services. Since web services are based on
XML, the components can be implemented and oper-
ated on any platform, such as Java EE or .NET. Further-
more, communication channels are secured on the trans-
port layer using HTTPS.

The usability and performance features of the compo-
nents used by the voters are crucial. At the same time,
a technology must be used which is available on virtu-
ally all potential computers used by voters. This is ad-
dressed by letting voters use standard web browsers run-
ning JavaScript.

The server-side components are implemented using
the Java EE platform and operated on a JBoss application
server. In addition to the core functionality, each compo-
nent has been enhanced by a management console, which
allows to initialize and monitor the components during
operation.

Baloti.ch. On the Internet platform Baloti.ch, the mi-
grant population living in Switzerland can cast votes with
the help of Selectio Helvetica. A public call for integra-
tion projects by the Swiss Federal Commission for Mi-
gration Issues allowed an interdisciplinary consortium to
design and test a multilingual Internet platform mimick-
ing Swiss referendum politics as a two year pilot starting
in 2010. Besides politically neutral information on cur-
rent referendum votes, the website offers an electronic
replica of a ballot vote for all issues at stake on the Swiss
national level. It thus provides an interesting test bed en-
vironment for electronic voting. Because of the political
nature of the project and the sensitive information (polit-
ical preferences) provided by the voters, it was important
to provide a secure Internet voting system. In order to
build up trust in the system, we opted against having per-
manently stored user profiles.

The Baloti website is activated three weeks before
a national referendum. This corresponds to the period
Swiss citizens are allowed to cast their vote by postal
mail. During the voting period, the electronic ballot
box is open and information on all national votes is dis-
played. With the help of press releases, coverage on
Swiss TV and radio stations, Facebook and Google Ads,
etc., Baloti.ch was advertised and went online for the first

11

time during the September 2010 referendum on a revi-
sion of the Swiss Unemployment Insurance Law. During
the voting period, the website had 3’300 single visitors.
Roughly 10 percent of all visitors cast a vote. For the
second Baloti vote in November 2010 the website had
4’500 visitors, but fewer votes than in September 2010.
The decrease of cast votes could partly be attributed to
the complicated nature of the bills and several pending
usability problems. During the remaining time of the pi-
lot until the end of 2011, we will address these issues and
constantly improve the site.

5 Conclusion

Shuffling and mix-net techniques are known as useful
tools in the construction of secure Internet voting sys-
tems. While some protocols are based on shuffling the
votes and others on shuffling the candidates, this paper
introduces a relatively new type of voting protocol based
on shuffling the voting credentials. In the proposed pro-
tocol, the voting credentials consist of simple DSA pub-
lic keys. The shuffling of these keys creates a list of
anonymous keys, which can no longer be attributed to
individual voters, but which can still be used to verify
their signatures. We have shown how the shuffling pro-
cedure works and how to construct corresponding proofs
of correct shuffling.

The resulting Internet voting protocol is extremely
simple to explain and very efficient on the voter’s side:
the voter only needs to encrypt and sign the vote. The
protocol is therefore of particular interest for voting de-
vices with limited capacities. Despite its simplicity, the
protocol still possesses most of the commonly required
security properties. It is not receipt-free and therefore not
coercion-resistant, but it could be used as the electronic
component of a hybrid voting system, and thus achieve
an acceptable degree of coercion-resistance.

Acknowledgments

Research supported by the Hasler Foundation (project
No. 09037) and the Mittelbauförderung of the Bern Uni-
versity of Applied Sciences. We thank all reviewers for
their valuable comments.

References
[1] ADIDA, B. Helios: Web-based open-audit voting. In SS’08,

17th USENIX Security Symposium (San Jose, USA, 2008), P. Van
Oorschot, Ed., pp. 335–348.

[2] ADIDA, B., DE MARNEFFE, O., PEREIRA, O., AND
QUISQUATER, J. J. Electing a university president us-
ing open-audit voting: Analysis of real-world use of He-
lios. In EVT/WOTE’09, Electronic Voting Technology Work-

shop/Workshop on Trustworthy Elections (Montreal, Canada,
2009), D. Jefferson, J. L. Hall, and T. Moran, Eds.

[3] ARAÚJO, R., FOULLE, S., AND TRAORÉ, J. A practical and
secure coercion-resistant scheme for internet voting. In To-
wards Trustworthy Elections: New Directions in Electronic Vot-
ing, D. Chaum, M. Jakobsson, R. Rivest, P. Ryan, J. Benaloh,
M. Kutylowski, and B. Adida, Eds., LNCS 6000. Springer, 2010,
pp. 330–342.

[4] BANGERTER, E. Efficient Zero-Knowledge Proofs of Knowledge
for Homomorphisms. PhD thesis, Fakultät für Elektrotechnik und
Informationstechnik, Ruhr-Universität Bochum, Germany, 2005.

[5] BENALOH, J. Simple verifiable election. In EVT’06,
USENIX/ACCURATE Electronic Voting Technology Workshop
(Vancouver, Canada, 2006), D. S. Wallach and R. L. Rivest, Eds.

[6] CHAUM, D. Untraceable electronic mail, return addresses and
digital pseudonyms. Communications of the ACM 24, 2 (1981),
84–88.

[7] CHAUM, D., ESSEX, A., CARBACK, R., CLARK, J., POPOVE-
NIUC, S., SHERMAN, A., AND VORA, P. Scantegrity: End-to-
end voter-verifiable optical-scan voting. IEEE Security & Privacy
6, 3 (2008), 40–46.

[8] CHAUM, D., AND VAN HEYST, E. Group signatures. In EURO-
CRYPT’91, Workshop on the Theory and Application of Crypto-
graphic Techniques (Brigthon, U.K., 1991), D. W. Davies, Ed.,
LNCS 547, pp. 257–265.

[9] CLARK, J., AND HENGARTNER, U. Selections: Internet vot-
ing with over-the-shoulder coercion-resistance. In FC’11, 15th
International Conference on Financial Cryptography (St. Lucia,
2011).

[10] CRAMER, R., GENNARO, R., AND SCHOENMAKERS, B. A
secure and optimally efficient multi-authority election scheme.
European Transactions on Telecommunications 8, 5 (1997), 481–
490.

[11] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. In SS’04, 13th USENIX
Security Symposium (San Diego, USA, 2004), M. Blaze, Ed.,
pp. 303–320.

[12] DUBUIS, E., FISCHLI, S., HAENNI, R., SERDÜLT, U., AND
SPYCHER, O. Selectio Helvetica: A verifiable remote e-voting
system. In CeDEM’11, Conference for E-Democracy and Open
Government (Krems, Austria, 2011).

[13] FIAT, A., AND SHAMIR, A. How to prove yourself: Practical so-
lutions to identification and signature problems. In CRYPTO’86,
6th Annual International Cryptology Conference on Advances in
Cryptology (Santa Barbara, USA, 1986), A. M. Odlyzko, Ed.,
pp. 186–194.

[14] FISHER, K., CARBACK, R. T., AND SHERMAN, A. T. Punch-
scan: Introduction and system definition of a high-integrity elec-
tion system. In WOTE’06, IAVoSS Workshop On Trustworthy
Elections (Cambridge, U.K., 2006).

[15] FUJIOKA, A., OKAMOTO, T., AND OHTA, K. A practical se-
cret voting scheme for large scale elections. In ASIACRYPT’92,
Workshop on the Theory and Application of Cryptographic Tech-
niques (Gold Coast, Australia, 1992), J. Seberry and Y. Zheng,
Eds., LNCS 718, pp. 244–251.

[16] FURUKAWA, J., AND SAKO, K. An efficient scheme for prov-
ing a shuffle. In CRYPTO’01, 21st Annual International Cryptol-
ogy Conference on Advances in Cryptology (Santa Barbara, USA,
2001), J. Kilian, Ed., LNCS 2139, pp. 368–387.

[17] GENNARO, R., JARECKI, S., KRAWCZYK, H., AND RABIN,
T. Secure distributed key generation for discrete-log based cryp-
tosystems. In EUROCRYPT’99, International Conference on the
Theory and Application of Cryptographic Techniques (Prague,
Czech Republic, 1999), J. Stern, Ed., LNCS 1592, pp. 295–310.

12

[18] GOLDBERG, I. On the security of the Tor authentication proto-
col. In PET’06, 6th Workshop on Privacy Enhancing Technolo-
gies (Cambridge, U.K., 2006), G. Danezis and P. Golle, Eds.,
pp. 316–331.

[19] GROTH, J. A verifiable secret shuffle of homomorphic encryp-
tions. Journal of Cryptology 23, 4 (2010), 546–579.

[20] HEATHER, J., AND LUNDIN, D. The append-only web bulletin
board. In FAST’08, 5th International Workshop on Formal As-
pects in Security and Trust (Malaga, Spain, 2008), P. Degano,
J. Guttman, and F. Martinelli, Eds., LNCS 5491, pp. 242–256.

[21] HIRT, M., AND SAKO, K. Efficient receipt-free voting based
on homomorphic encryption. In EUROCRYPT’00, International
Conference on the Theory and Applications of Cryptographic
Techniques (Bruges, Belgium, 2000), G. Goos, J. Hartmanis, and
J. van Leeuwen, Eds., LNCS 1807, pp. 539–556.

[22] JAKOBSSON, M., AND JUELS, A. Mix and match: Secure
function evaluation via ciphertexts. In ASIACRYPT’00, 6th In-
ternational Conference on the Theory and Application of Cryp-
tographic Techniques (Kyoto, Japan, 2000), T. Okamoto, Ed.,
LNCS 1976, pp. 162–177.

[23] JAKOBSSON, M., JUELS, A., AND RIVEST, R. L. Making mix
nets robust for electronic voting by randomized partial check-
ing. In SS’02, 11th USENIX Security Symposium (San Francisco,
USA, 2002), D. Boneh, Ed., pp. 339–353.

[24] JONKER, H. L. Security Matters: Privacy in Voting and Fair-
ness in Digital Exchange. PhD thesis, Eindhoven University of
Technology and University of Luxembourg, 2009.

[25] JUELS, A., CATALANO, D., AND JAKOBSSON, M. Coercion-
resistant electronic elections. In WPES’05, 4th ACM Workshop
on Privacy in the Electronic Society (Alexandria, USA, 2005),
V. Atluri, S. De Capitani di Vimercati, and R. Dingledine, Eds.,
pp. 61–70.

[26] NEFF, C. A. A verifiable secret shuffle and its application to
e-voting. In CCS’01, 8th ACM Conference on Computer and
Communications Security (Philadelphia, USA, 2001), P. Sama-
rati, Ed., pp. 116–125.

[27] NEFF, C. A. Verifiable mixing (shuffling) of ElGamal pairs.
Tech. rep., VoteHere, Inc., 2004.

[28] PETERS, R. A. A secure bulletin board. Master’s thesis, Depart-
ment of Mathematics and Computing Science, Technische Uni-
versiteit Eindhoven, The Netherlands, 2005.

[29] RYAN, P. Y. A., BISMARK, D., HEATHER, J., SCHNEIDER, S.,
AND ZHE, X. Prêt à voter: a voter-verifiable voting system. IEEE
Transactions on Information Forensics and Security 4, 4 (2009),
662–673.

[30] SAKO, K., AND KILIAN., J. Receipt-free mix-type voting
scheme: A practical solution to the implementation of a voting
booth. In EUROCRYPT’95, 15th International Conference on
the Theory and Applications of Cryptographic Techniques (Saint-
Malo, France, 1995), L. C. Guillou and J. J. Quisquater, Eds.,
LNCS 921, pp. 393–403.

[31] SHAMIR, A. How to share a secret. Communications of the ACM
22, 11 (1979), 612–613.

[32] SPYCHER, O., AND HAENNI, R. A novel protocol to allow re-
vocation of votes in a hybrid voting system. In ISSA’10, 9th An-
nual Conference on Information Security – South Africa (Sand-
ton, South Africa, 2010).

[33] SPYCHER, O., HAENNI, R., AND DUBUIS, E. Coercion-
resistant hybrid voting systems. In EVOTE’10, 4th Interna-
tional Workshop on Electronic Voting (Bregenz, Austria, 2010),
R. Krimmer and R. Grimm, Eds., no. P-167 in Lecture Notes in
Informatics, Gesellschaft für Informatik E.V., pp. 269–282.

[34] SPYCHER, O., KOENIG, R., HAENNI, R., AND SCHLÄPFER,
M. A new approach towards coercion-resistant remote e-voting
in linear time. In FC’11, 15th International Conference on Fi-
nancial Cryptography (St. Lucia, 2011).

[35] SUNG, S. H. Y., AND LEE, J. An electronic voting scheme based
on undeniable blind signature. In ICCST’03, 37th Annual Inter-
national Carnahan Conference on Security Technology (Taipei,
Taiwan, 2003), pp. 163–167.

[36] WIKSTRÖM, D. A commitment-consistent proof of a shuffle. In
ACISP’09, 14th Australasian Conference on Information Security
and Privacy (Brisbane, Australia, 2009), C. Boyd and J. González
Nieto, Eds., LNCS 5594, pp. 407–421.

[37] XIA, Z., AND SCHNEIDER, S. A new receipt-free e-voting
scheme based on blind signature. In WOTE’06, IAVoSS Workshop
on Trustworthy Elections (Cambridge, U.K., 2006), pp. 127–135.

13

