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1 Theoretical Background

Commitment schemes are usually perfectly hiding and computationally binding. This
means that no information about the message can be derived from the commitment and
that the commitment can not be opened to a message other than the original one. The
Pedersen commitment scheme achieves these properties by computing c = GmHr in a
multiplicative cyclic group, for which the discrete logarithm assumption (DL) is believed
to hold. This scheme is perfectly binding, because a randomization r′ 6= r exists for any
other message m′ 6= m such that c = Gm′

Hr′ . This means that c could potentially
be opened to all q messages from Zq, but this requires the computation of the discrete
logarithm. The Swiss Post voting protocol works with a subgroup Gq ⊆ Z∗p of integers
modulo p, where q = |Gq| denotes the prime order of the subgroup, m ∈ Zq the message,
and r ∈ Zq the randomization. Both G and H are elements of Gq.
A pre-condition for the scheme to be computationally binding is the independence of

the two values G,H ∈ Gq\{1} (in a group of prime order q, both values are generators of
Gq). Independence means that respective discrete logarithms h = logGH and g = logH G
are unknown to everyone. Otherwise, for example if h = logG H is known to the person
who created c, then c can be rewritten as

c = GmHr = Gm(Gh)r = Gm+hr mod q.

Therefore, to open c to a different message m′ 6= m, the adversary can easily solve

m+ hr ≡ m′ + hr′ (mod q)

to find the matching randomization r′ = (m−m′)h−1 + r mod q. As a consequence, the
binding property of the commitment scheme is completely broken in that case.
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2 Problem and Attack Description

Commitment schemes are important building blocks in other cryptographic primitives,
for example in zero-knowledge proofs. The Bayer-Groth proof system, which is used
to prove that the encrypted votes have been shuffled correctly, makes intensive use of
Pedersen commitments. Often, the commitment involves multiple messages m1, . . . ,mn,
where n denotes the number of encrypted votes. The Pedersen commitment can be
extended easily to this general case by

c = Gm1
1 . . . Gmn

n Hr,

where G1, . . . , Gn, H are all pairwise independent in the way described above. If inde-
pendence is violated between H and one single value Gi, then the extended commitment
c can be open for any vector of alternative messages m′1, . . . ,m′n. If this happens, then
the whole shuffle proof argument collapses, i.e., it is possible to construct a fake proof
for an incorrect shuffle. This can be exploited by the mixing component in at least two
different ways:

1. Manipulation of the Election Result:
Instead of re-encrypting the shuffled encrypted votes, the malicious mixing com-
ponent manipulates the input encryption list in an arbitrary way, for example such
that the preferred candidate wins the election. Then a fake proof is constructed,
which links the manipulated output encryption list to the correct input encryption
list. The verification of the proof will succeed and the attack remains undetected.

2. Breaking Vote Privacy:
The first mixing component adds a marking to each encrypted vote of the input
list. This can be done easily due to the homomorphic property of the ElGamal
encryption scheme. As above, a fake proof is then constructed, which links the
manipulated output encryption list to the correct input encryption list. Again,
the attack remains completely undetected at this point. After decryption, the
markings will become visible in the result cleartext votes, which exposes the links
between votes and voters to the malicious first mixing component.

Both attacks are easily implementable in the Swiss Post voting system by a mali-
cious mixing component, because of a critical flaw in the generation of the values
(G1, . . . , Gn, H). In [2, Page 128], this vector of size n + 1 is called commitment key
ck.1 According to [2, Section 9.1.7], each of these values is generated using the so-called
Group Element Generation Primitive. This primitive is specified in [2, Section 9.1.26],
and there is the critical flaw. As already reported in Issue #274, the generation of ran-
dom group element should not be done according to the proposed algorithm, because it
reveals the discrete logarithm r = logg R of the generated random value R ∈ Gq. If two
supposedly independent generators H1, H2 ∈ Gq are generated in this way, then knowl-
edge of h1 = logg H1 mod p and h2 = logg H2 mod p reveals logH1

H2 mod p = h2

h1
mod q,

i.e., the pre-condition of the above attack against the commitment scheme and the
shuffle-proof system is given in a trivial way.

1No keys are involved in generating and opening commitments, so calling the values ck =
(G1, . . . , Gn, H) a key is a rather inappropriate choice.
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3 Counter-Measures

Generally, it is important to distinguish the problems of generating random group el-
ements and independent generators. Best practices for the former problem have been
discussed in the submitted report registered as Issue #274. The latter problem, how-
ever, is more delicate, but there are international standards such as FIPS PUB 186-4 [1,
Appendix A.2.3], which are not difficult to implement. The key feature of such methods
is making the generation of independent generators publicly verifiable. More general
methods have been developed for producing verifiably random numbers. The resulting
verification is important for both parties opening a commitment and parties verifying a
shuffle proof. Without such a verification, neither the commitment nor the shuffle proof
is convincing.

As a counter-measure to avoid such attacks, we suggest to implement standard al-
gorithms like the one mentioned above. In addition to this, an additional verification
step for checking the independence of the generators needs to be implemented into the
verification procedure of the mixing steps.

4 Conclusion

This encountered problem in the generation of independent generators fully undermines
the security of the whole mix-net, which opens doors for arbitrarily scalable vote integrity
and vote secrecy attacks by malicious mixing components. Most of these attacks are
undetectable both during and in the aftermath of an election. On the other hand, fixing
the problem is relatively simple using existing methods.
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